This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double composition of Hilbert space operators. (Contributed by NM, 1-Dec-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hods.1 | |- R : ~H --> ~H |
|
| hods.2 | |- S : ~H --> ~H |
||
| hods.3 | |- T : ~H --> ~H |
||
| Assertion | ho2coi | |- ( A e. ~H -> ( ( ( R o. S ) o. T ) ` A ) = ( R ` ( S ` ( T ` A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hods.1 | |- R : ~H --> ~H |
|
| 2 | hods.2 | |- S : ~H --> ~H |
|
| 3 | hods.3 | |- T : ~H --> ~H |
|
| 4 | 1 2 | hocofi | |- ( R o. S ) : ~H --> ~H |
| 5 | 4 3 | hocoi | |- ( A e. ~H -> ( ( ( R o. S ) o. T ) ` A ) = ( ( R o. S ) ` ( T ` A ) ) ) |
| 6 | 3 | ffvelcdmi | |- ( A e. ~H -> ( T ` A ) e. ~H ) |
| 7 | 1 2 | hocoi | |- ( ( T ` A ) e. ~H -> ( ( R o. S ) ` ( T ` A ) ) = ( R ` ( S ` ( T ` A ) ) ) ) |
| 8 | 6 7 | syl | |- ( A e. ~H -> ( ( R o. S ) ` ( T ` A ) ) = ( R ` ( S ` ( T ` A ) ) ) ) |
| 9 | 5 8 | eqtrd | |- ( A e. ~H -> ( ( ( R o. S ) o. T ) ` A ) = ( R ` ( S ` ( T ` A ) ) ) ) |