This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Hilbert lattice is orthomodular, complete, and has the covering (exchange) property. (Contributed by NM, 5-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hlomcmcv | |- ( K e. HL -> ( K e. OML /\ K e. CLat /\ K e. CvLat ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 2 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 3 | eqid | |- ( lt ` K ) = ( lt ` K ) |
|
| 4 | eqid | |- ( join ` K ) = ( join ` K ) |
|
| 5 | eqid | |- ( 0. ` K ) = ( 0. ` K ) |
|
| 6 | eqid | |- ( 1. ` K ) = ( 1. ` K ) |
|
| 7 | eqid | |- ( Atoms ` K ) = ( Atoms ` K ) |
|
| 8 | 1 2 3 4 5 6 7 | ishlat1 | |- ( K e. HL <-> ( ( K e. OML /\ K e. CLat /\ K e. CvLat ) /\ ( A. x e. ( Atoms ` K ) A. y e. ( Atoms ` K ) ( x =/= y -> E. z e. ( Atoms ` K ) ( z =/= x /\ z =/= y /\ z ( le ` K ) ( x ( join ` K ) y ) ) ) /\ E. x e. ( Base ` K ) E. y e. ( Base ` K ) E. z e. ( Base ` K ) ( ( ( 0. ` K ) ( lt ` K ) x /\ x ( lt ` K ) y ) /\ ( y ( lt ` K ) z /\ z ( lt ` K ) ( 1. ` K ) ) ) ) ) ) |
| 9 | 8 | simplbi | |- ( K e. HL -> ( K e. OML /\ K e. CLat /\ K e. CvLat ) ) |