This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of hbsbw as of 14-May-2025. (Contributed by NM, 12-Aug-1993) (Revised by GG, 23-May-2024) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hbsbw.1 | |- ( ph -> A. z ph ) |
|
| Assertion | hbsbwOLD | |- ( [ y / x ] ph -> A. z [ y / x ] ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbsbw.1 | |- ( ph -> A. z ph ) |
|
| 2 | dfsb | |- ( [ y / x ] ph <-> A. w ( w = y -> A. x ( x = w -> ph ) ) ) |
|
| 3 | 1 | imim2i | |- ( ( x = w -> ph ) -> ( x = w -> A. z ph ) ) |
| 4 | 3 | alimi | |- ( A. x ( x = w -> ph ) -> A. x ( x = w -> A. z ph ) ) |
| 5 | 19.21v | |- ( A. z ( x = w -> ph ) <-> ( x = w -> A. z ph ) ) |
|
| 6 | 5 | biimpri | |- ( ( x = w -> A. z ph ) -> A. z ( x = w -> ph ) ) |
| 7 | 6 | alimi | |- ( A. x ( x = w -> A. z ph ) -> A. x A. z ( x = w -> ph ) ) |
| 8 | ax-11 | |- ( A. x A. z ( x = w -> ph ) -> A. z A. x ( x = w -> ph ) ) |
|
| 9 | 4 7 8 | 3syl | |- ( A. x ( x = w -> ph ) -> A. z A. x ( x = w -> ph ) ) |
| 10 | 9 | imim2i | |- ( ( w = y -> A. x ( x = w -> ph ) ) -> ( w = y -> A. z A. x ( x = w -> ph ) ) ) |
| 11 | 19.21v | |- ( A. z ( w = y -> A. x ( x = w -> ph ) ) <-> ( w = y -> A. z A. x ( x = w -> ph ) ) ) |
|
| 12 | 10 11 | sylibr | |- ( ( w = y -> A. x ( x = w -> ph ) ) -> A. z ( w = y -> A. x ( x = w -> ph ) ) ) |
| 13 | 12 | hbal | |- ( A. w ( w = y -> A. x ( x = w -> ph ) ) -> A. z A. w ( w = y -> A. x ( x = w -> ph ) ) ) |
| 14 | 2 13 | hbxfrbi | |- ( [ y / x ] ph -> A. z [ y / x ] ph ) |