This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A more general and closed form of hbim . (Contributed by Scott Fenton, 13-Dec-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hbimtg | |- ( ( A. x ( ph -> A. x ch ) /\ ( ps -> A. x th ) ) -> ( ( ch -> ps ) -> A. x ( ph -> th ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbntg | |- ( A. x ( ph -> A. x ch ) -> ( -. ch -> A. x -. ph ) ) |
|
| 2 | pm2.21 | |- ( -. ph -> ( ph -> th ) ) |
|
| 3 | 2 | alimi | |- ( A. x -. ph -> A. x ( ph -> th ) ) |
| 4 | 1 3 | syl6 | |- ( A. x ( ph -> A. x ch ) -> ( -. ch -> A. x ( ph -> th ) ) ) |
| 5 | 4 | adantr | |- ( ( A. x ( ph -> A. x ch ) /\ ( ps -> A. x th ) ) -> ( -. ch -> A. x ( ph -> th ) ) ) |
| 6 | ala1 | |- ( A. x th -> A. x ( ph -> th ) ) |
|
| 7 | 6 | imim2i | |- ( ( ps -> A. x th ) -> ( ps -> A. x ( ph -> th ) ) ) |
| 8 | 7 | adantl | |- ( ( A. x ( ph -> A. x ch ) /\ ( ps -> A. x th ) ) -> ( ps -> A. x ( ph -> th ) ) ) |
| 9 | 5 8 | jad | |- ( ( A. x ( ph -> A. x ch ) /\ ( ps -> A. x th ) ) -> ( ( ch -> ps ) -> A. x ( ph -> th ) ) ) |