This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the size of the image of a one-to-one function E under the range of a function F which is a one-to-one function into the domain of E is a nonnegative integer, the size of the function F is the same nonnegative integer. (Contributed by Alexander van der Vekens, 4-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashimarni | |- ( ( E : dom E -1-1-> ran E /\ E e. V ) -> ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E /\ P = ( E " ran F ) /\ ( # ` P ) = N ) -> ( # ` F ) = N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqeq2 | |- ( P = ( E " ran F ) -> ( ( # ` P ) = N <-> ( # ` ( E " ran F ) ) = N ) ) |
|
| 2 | 1 | adantl | |- ( ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E /\ ( E : dom E -1-1-> ran E /\ E e. V ) ) /\ P = ( E " ran F ) ) -> ( ( # ` P ) = N <-> ( # ` ( E " ran F ) ) = N ) ) |
| 3 | hashimarn | |- ( ( E : dom E -1-1-> ran E /\ E e. V ) -> ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E -> ( # ` ( E " ran F ) ) = ( # ` F ) ) ) |
|
| 4 | 3 | impcom | |- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E /\ ( E : dom E -1-1-> ran E /\ E e. V ) ) -> ( # ` ( E " ran F ) ) = ( # ` F ) ) |
| 5 | id | |- ( ( # ` ( E " ran F ) ) = N -> ( # ` ( E " ran F ) ) = N ) |
|
| 6 | 4 5 | sylan9req | |- ( ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E /\ ( E : dom E -1-1-> ran E /\ E e. V ) ) /\ ( # ` ( E " ran F ) ) = N ) -> ( # ` F ) = N ) |
| 7 | 6 | ex | |- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E /\ ( E : dom E -1-1-> ran E /\ E e. V ) ) -> ( ( # ` ( E " ran F ) ) = N -> ( # ` F ) = N ) ) |
| 8 | 7 | adantr | |- ( ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E /\ ( E : dom E -1-1-> ran E /\ E e. V ) ) /\ P = ( E " ran F ) ) -> ( ( # ` ( E " ran F ) ) = N -> ( # ` F ) = N ) ) |
| 9 | 2 8 | sylbid | |- ( ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E /\ ( E : dom E -1-1-> ran E /\ E e. V ) ) /\ P = ( E " ran F ) ) -> ( ( # ` P ) = N -> ( # ` F ) = N ) ) |
| 10 | 9 | exp31 | |- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E -> ( ( E : dom E -1-1-> ran E /\ E e. V ) -> ( P = ( E " ran F ) -> ( ( # ` P ) = N -> ( # ` F ) = N ) ) ) ) |
| 11 | 10 | com23 | |- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E -> ( P = ( E " ran F ) -> ( ( E : dom E -1-1-> ran E /\ E e. V ) -> ( ( # ` P ) = N -> ( # ` F ) = N ) ) ) ) |
| 12 | 11 | com34 | |- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E -> ( P = ( E " ran F ) -> ( ( # ` P ) = N -> ( ( E : dom E -1-1-> ran E /\ E e. V ) -> ( # ` F ) = N ) ) ) ) |
| 13 | 12 | 3imp | |- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E /\ P = ( E " ran F ) /\ ( # ` P ) = N ) -> ( ( E : dom E -1-1-> ran E /\ E e. V ) -> ( # ` F ) = N ) ) |
| 14 | 13 | com12 | |- ( ( E : dom E -1-1-> ran E /\ E e. V ) -> ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E /\ P = ( E " ran F ) /\ ( # ` P ) = N ) -> ( # ` F ) = N ) ) |