This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonzero vector generates a (nonzero) 1-dimensional subspace. (Contributed by NM, 22-Jul-2001) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | h1dn0 | |- ( ( A e. ~H /\ A =/= 0h ) -> ( _|_ ` ( _|_ ` { A } ) ) =/= 0H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | h1did | |- ( A e. ~H -> A e. ( _|_ ` ( _|_ ` { A } ) ) ) |
|
| 2 | eleq2 | |- ( ( _|_ ` ( _|_ ` { A } ) ) = 0H -> ( A e. ( _|_ ` ( _|_ ` { A } ) ) <-> A e. 0H ) ) |
|
| 3 | 1 2 | syl5ibcom | |- ( A e. ~H -> ( ( _|_ ` ( _|_ ` { A } ) ) = 0H -> A e. 0H ) ) |
| 4 | elch0 | |- ( A e. 0H <-> A = 0h ) |
|
| 5 | 3 4 | imbitrdi | |- ( A e. ~H -> ( ( _|_ ` ( _|_ ` { A } ) ) = 0H -> A = 0h ) ) |
| 6 | 5 | necon3d | |- ( A e. ~H -> ( A =/= 0h -> ( _|_ ` ( _|_ ` { A } ) ) =/= 0H ) ) |
| 7 | 6 | imp | |- ( ( A e. ~H /\ A =/= 0h ) -> ( _|_ ` ( _|_ ` { A } ) ) =/= 0H ) |