This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Append an element to a finite group sum, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Thierry Arnoux, 28-Mar-2018) (Proof shortened by AV, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumunsnf.0 | |- F/_ k Y |
|
| gsumunsnf.b | |- B = ( Base ` G ) |
||
| gsumunsnf.p | |- .+ = ( +g ` G ) |
||
| gsumunsnf.g | |- ( ph -> G e. CMnd ) |
||
| gsumunsnf.a | |- ( ph -> A e. Fin ) |
||
| gsumunsnf.f | |- ( ( ph /\ k e. A ) -> X e. B ) |
||
| gsumunsnf.m | |- ( ph -> M e. V ) |
||
| gsumunsnf.d | |- ( ph -> -. M e. A ) |
||
| gsumunsnf.y | |- ( ph -> Y e. B ) |
||
| gsumunsnf.s | |- ( k = M -> X = Y ) |
||
| Assertion | gsumunsnf | |- ( ph -> ( G gsum ( k e. ( A u. { M } ) |-> X ) ) = ( ( G gsum ( k e. A |-> X ) ) .+ Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumunsnf.0 | |- F/_ k Y |
|
| 2 | gsumunsnf.b | |- B = ( Base ` G ) |
|
| 3 | gsumunsnf.p | |- .+ = ( +g ` G ) |
|
| 4 | gsumunsnf.g | |- ( ph -> G e. CMnd ) |
|
| 5 | gsumunsnf.a | |- ( ph -> A e. Fin ) |
|
| 6 | gsumunsnf.f | |- ( ( ph /\ k e. A ) -> X e. B ) |
|
| 7 | gsumunsnf.m | |- ( ph -> M e. V ) |
|
| 8 | gsumunsnf.d | |- ( ph -> -. M e. A ) |
|
| 9 | gsumunsnf.y | |- ( ph -> Y e. B ) |
|
| 10 | gsumunsnf.s | |- ( k = M -> X = Y ) |
|
| 11 | 10 | adantl | |- ( ( ph /\ k = M ) -> X = Y ) |
| 12 | 2 3 4 5 6 7 8 9 11 1 | gsumunsnfd | |- ( ph -> ( G gsum ( k e. ( A u. { M } ) |-> X ) ) = ( ( G gsum ( k e. A |-> X ) ) .+ Y ) ) |