This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show that a structure extending a constructed group (e.g., a ring) is also a group. This allows to prove that a constructed potential ring R is a group before we know that it is also a ring. (Theorem ringgrp , on the other hand, requires that we know in advance that R is a ring.) (Contributed by NM, 11-Oct-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpss.g | |- G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. } |
|
| grpss.r | |- R e. _V |
||
| grpss.s | |- G C_ R |
||
| grpss.f | |- Fun R |
||
| Assertion | grpss | |- ( G e. Grp <-> R e. Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpss.g | |- G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. } |
|
| 2 | grpss.r | |- R e. _V |
|
| 3 | grpss.s | |- G C_ R |
|
| 4 | grpss.f | |- Fun R |
|
| 5 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 6 | opex | |- <. ( Base ` ndx ) , B >. e. _V |
|
| 7 | 6 | prid1 | |- <. ( Base ` ndx ) , B >. e. { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. } |
| 8 | 7 1 | eleqtrri | |- <. ( Base ` ndx ) , B >. e. G |
| 9 | 2 4 3 5 8 | strss | |- ( Base ` R ) = ( Base ` G ) |
| 10 | plusgid | |- +g = Slot ( +g ` ndx ) |
|
| 11 | opex | |- <. ( +g ` ndx ) , .+ >. e. _V |
|
| 12 | 11 | prid2 | |- <. ( +g ` ndx ) , .+ >. e. { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. } |
| 13 | 12 1 | eleqtrri | |- <. ( +g ` ndx ) , .+ >. e. G |
| 14 | 2 4 3 10 13 | strss | |- ( +g ` R ) = ( +g ` G ) |
| 15 | 9 14 | grpprop | |- ( R e. Grp <-> G e. Grp ) |
| 16 | 15 | bicomi | |- ( G e. Grp <-> R e. Grp ) |