This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group is a monoid. (Contributed by FL, 2-Nov-2009) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grpomndo | |- ( G e. GrpOp -> G e. MndOp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ran G = ran G |
|
| 2 | 1 | isgrpo | |- ( G e. GrpOp -> ( G e. GrpOp <-> ( G : ( ran G X. ran G ) --> ran G /\ A. x e. ran G A. y e. ran G A. z e. ran G ( ( x G y ) G z ) = ( x G ( y G z ) ) /\ E. w e. ran G A. x e. ran G ( ( w G x ) = x /\ E. y e. ran G ( y G x ) = w ) ) ) ) |
| 3 | 2 | biimpd | |- ( G e. GrpOp -> ( G e. GrpOp -> ( G : ( ran G X. ran G ) --> ran G /\ A. x e. ran G A. y e. ran G A. z e. ran G ( ( x G y ) G z ) = ( x G ( y G z ) ) /\ E. w e. ran G A. x e. ran G ( ( w G x ) = x /\ E. y e. ran G ( y G x ) = w ) ) ) ) |
| 4 | 1 | grpoidinv | |- ( G e. GrpOp -> E. x e. ran G A. y e. ran G ( ( ( x G y ) = y /\ ( y G x ) = y ) /\ E. w e. ran G ( ( w G y ) = x /\ ( y G w ) = x ) ) ) |
| 5 | simpl | |- ( ( ( ( x G y ) = y /\ ( y G x ) = y ) /\ E. w e. ran G ( ( w G y ) = x /\ ( y G w ) = x ) ) -> ( ( x G y ) = y /\ ( y G x ) = y ) ) |
|
| 6 | 5 | ralimi | |- ( A. y e. ran G ( ( ( x G y ) = y /\ ( y G x ) = y ) /\ E. w e. ran G ( ( w G y ) = x /\ ( y G w ) = x ) ) -> A. y e. ran G ( ( x G y ) = y /\ ( y G x ) = y ) ) |
| 7 | 6 | reximi | |- ( E. x e. ran G A. y e. ran G ( ( ( x G y ) = y /\ ( y G x ) = y ) /\ E. w e. ran G ( ( w G y ) = x /\ ( y G w ) = x ) ) -> E. x e. ran G A. y e. ran G ( ( x G y ) = y /\ ( y G x ) = y ) ) |
| 8 | 1 | ismndo2 | |- ( G e. GrpOp -> ( G e. MndOp <-> ( G : ( ran G X. ran G ) --> ran G /\ A. x e. ran G A. y e. ran G A. z e. ran G ( ( x G y ) G z ) = ( x G ( y G z ) ) /\ E. x e. ran G A. y e. ran G ( ( x G y ) = y /\ ( y G x ) = y ) ) ) ) |
| 9 | 8 | biimprcd | |- ( ( G : ( ran G X. ran G ) --> ran G /\ A. x e. ran G A. y e. ran G A. z e. ran G ( ( x G y ) G z ) = ( x G ( y G z ) ) /\ E. x e. ran G A. y e. ran G ( ( x G y ) = y /\ ( y G x ) = y ) ) -> ( G e. GrpOp -> G e. MndOp ) ) |
| 10 | 9 | 3exp | |- ( G : ( ran G X. ran G ) --> ran G -> ( A. x e. ran G A. y e. ran G A. z e. ran G ( ( x G y ) G z ) = ( x G ( y G z ) ) -> ( E. x e. ran G A. y e. ran G ( ( x G y ) = y /\ ( y G x ) = y ) -> ( G e. GrpOp -> G e. MndOp ) ) ) ) |
| 11 | 10 | impcom | |- ( ( A. x e. ran G A. y e. ran G A. z e. ran G ( ( x G y ) G z ) = ( x G ( y G z ) ) /\ G : ( ran G X. ran G ) --> ran G ) -> ( E. x e. ran G A. y e. ran G ( ( x G y ) = y /\ ( y G x ) = y ) -> ( G e. GrpOp -> G e. MndOp ) ) ) |
| 12 | 11 | com3l | |- ( E. x e. ran G A. y e. ran G ( ( x G y ) = y /\ ( y G x ) = y ) -> ( G e. GrpOp -> ( ( A. x e. ran G A. y e. ran G A. z e. ran G ( ( x G y ) G z ) = ( x G ( y G z ) ) /\ G : ( ran G X. ran G ) --> ran G ) -> G e. MndOp ) ) ) |
| 13 | 7 12 | syl | |- ( E. x e. ran G A. y e. ran G ( ( ( x G y ) = y /\ ( y G x ) = y ) /\ E. w e. ran G ( ( w G y ) = x /\ ( y G w ) = x ) ) -> ( G e. GrpOp -> ( ( A. x e. ran G A. y e. ran G A. z e. ran G ( ( x G y ) G z ) = ( x G ( y G z ) ) /\ G : ( ran G X. ran G ) --> ran G ) -> G e. MndOp ) ) ) |
| 14 | 4 13 | mpcom | |- ( G e. GrpOp -> ( ( A. x e. ran G A. y e. ran G A. z e. ran G ( ( x G y ) G z ) = ( x G ( y G z ) ) /\ G : ( ran G X. ran G ) --> ran G ) -> G e. MndOp ) ) |
| 15 | 14 | expdcom | |- ( A. x e. ran G A. y e. ran G A. z e. ran G ( ( x G y ) G z ) = ( x G ( y G z ) ) -> ( G : ( ran G X. ran G ) --> ran G -> ( G e. GrpOp -> G e. MndOp ) ) ) |
| 16 | 15 | a1i | |- ( E. w e. ran G A. x e. ran G ( ( w G x ) = x /\ E. y e. ran G ( y G x ) = w ) -> ( A. x e. ran G A. y e. ran G A. z e. ran G ( ( x G y ) G z ) = ( x G ( y G z ) ) -> ( G : ( ran G X. ran G ) --> ran G -> ( G e. GrpOp -> G e. MndOp ) ) ) ) |
| 17 | 16 | com13 | |- ( G : ( ran G X. ran G ) --> ran G -> ( A. x e. ran G A. y e. ran G A. z e. ran G ( ( x G y ) G z ) = ( x G ( y G z ) ) -> ( E. w e. ran G A. x e. ran G ( ( w G x ) = x /\ E. y e. ran G ( y G x ) = w ) -> ( G e. GrpOp -> G e. MndOp ) ) ) ) |
| 18 | 17 | 3imp | |- ( ( G : ( ran G X. ran G ) --> ran G /\ A. x e. ran G A. y e. ran G A. z e. ran G ( ( x G y ) G z ) = ( x G ( y G z ) ) /\ E. w e. ran G A. x e. ran G ( ( w G x ) = x /\ E. y e. ran G ( y G x ) = w ) ) -> ( G e. GrpOp -> G e. MndOp ) ) |
| 19 | 3 18 | syli | |- ( G e. GrpOp -> ( G e. GrpOp -> G e. MndOp ) ) |
| 20 | 19 | pm2.43i | |- ( G e. GrpOp -> G e. MndOp ) |