This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If left adding an element of a group to an arbitrary element of the group results in this element, the added element is the identity element and vice versa. (Contributed by AV, 15-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpidrcan.b | |- B = ( Base ` G ) |
|
| grpidrcan.p | |- .+ = ( +g ` G ) |
||
| grpidrcan.o | |- .0. = ( 0g ` G ) |
||
| Assertion | grpidlcan | |- ( ( G e. Grp /\ X e. B /\ Z e. B ) -> ( ( Z .+ X ) = X <-> Z = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidrcan.b | |- B = ( Base ` G ) |
|
| 2 | grpidrcan.p | |- .+ = ( +g ` G ) |
|
| 3 | grpidrcan.o | |- .0. = ( 0g ` G ) |
|
| 4 | 1 2 3 | grplid | |- ( ( G e. Grp /\ X e. B ) -> ( .0. .+ X ) = X ) |
| 5 | 4 | 3adant3 | |- ( ( G e. Grp /\ X e. B /\ Z e. B ) -> ( .0. .+ X ) = X ) |
| 6 | 5 | eqeq2d | |- ( ( G e. Grp /\ X e. B /\ Z e. B ) -> ( ( Z .+ X ) = ( .0. .+ X ) <-> ( Z .+ X ) = X ) ) |
| 7 | simp1 | |- ( ( G e. Grp /\ X e. B /\ Z e. B ) -> G e. Grp ) |
|
| 8 | simp3 | |- ( ( G e. Grp /\ X e. B /\ Z e. B ) -> Z e. B ) |
|
| 9 | 1 3 | grpidcl | |- ( G e. Grp -> .0. e. B ) |
| 10 | 9 | 3ad2ant1 | |- ( ( G e. Grp /\ X e. B /\ Z e. B ) -> .0. e. B ) |
| 11 | simp2 | |- ( ( G e. Grp /\ X e. B /\ Z e. B ) -> X e. B ) |
|
| 12 | 1 2 | grprcan | |- ( ( G e. Grp /\ ( Z e. B /\ .0. e. B /\ X e. B ) ) -> ( ( Z .+ X ) = ( .0. .+ X ) <-> Z = .0. ) ) |
| 13 | 7 8 10 11 12 | syl13anc | |- ( ( G e. Grp /\ X e. B /\ Z e. B ) -> ( ( Z .+ X ) = ( .0. .+ X ) <-> Z = .0. ) ) |
| 14 | 6 13 | bitr3d | |- ( ( G e. Grp /\ X e. B /\ Z e. B ) -> ( ( Z .+ X ) = X <-> Z = .0. ) ) |