This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Isomorphic graphs have equinumerous sets of vertices. (Contributed by AV, 3-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gricen.b | |- B = ( Vtx ` R ) |
|
| gricen.c | |- C = ( Vtx ` S ) |
||
| Assertion | gricen | |- ( R ~=gr S -> B ~~ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gricen.b | |- B = ( Vtx ` R ) |
|
| 2 | gricen.c | |- C = ( Vtx ` S ) |
|
| 3 | brgric | |- ( R ~=gr S <-> ( R GraphIso S ) =/= (/) ) |
|
| 4 | n0 | |- ( ( R GraphIso S ) =/= (/) <-> E. f f e. ( R GraphIso S ) ) |
|
| 5 | 1 2 | grimf1o | |- ( f e. ( R GraphIso S ) -> f : B -1-1-onto-> C ) |
| 6 | 1 | fvexi | |- B e. _V |
| 7 | 6 | f1oen | |- ( f : B -1-1-onto-> C -> B ~~ C ) |
| 8 | 5 7 | syl | |- ( f e. ( R GraphIso S ) -> B ~~ C ) |
| 9 | 8 | exlimiv | |- ( E. f f e. ( R GraphIso S ) -> B ~~ C ) |
| 10 | 4 9 | sylbi | |- ( ( R GraphIso S ) =/= (/) -> B ~~ C ) |
| 11 | 3 10 | sylbi | |- ( R ~=gr S -> B ~~ C ) |