This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reversal of scanning order inside of a universal quantification restricted to a finite set of sequential integers. (Contributed by NM, 25-Nov-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzrevral2 | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( A. j e. ( ( K - N ) ... ( K - M ) ) ph <-> A. k e. ( M ... N ) [. ( K - k ) / j ]. ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zsubcl | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( K - N ) e. ZZ ) |
|
| 2 | 1 | 3adant2 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K - N ) e. ZZ ) |
| 3 | zsubcl | |- ( ( K e. ZZ /\ M e. ZZ ) -> ( K - M ) e. ZZ ) |
|
| 4 | 3 | 3adant3 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K - M ) e. ZZ ) |
| 5 | simp1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> K e. ZZ ) |
|
| 6 | fzrevral | |- ( ( ( K - N ) e. ZZ /\ ( K - M ) e. ZZ /\ K e. ZZ ) -> ( A. j e. ( ( K - N ) ... ( K - M ) ) ph <-> A. k e. ( ( K - ( K - M ) ) ... ( K - ( K - N ) ) ) [. ( K - k ) / j ]. ph ) ) |
|
| 7 | 2 4 5 6 | syl3anc | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( A. j e. ( ( K - N ) ... ( K - M ) ) ph <-> A. k e. ( ( K - ( K - M ) ) ... ( K - ( K - N ) ) ) [. ( K - k ) / j ]. ph ) ) |
| 8 | zcn | |- ( K e. ZZ -> K e. CC ) |
|
| 9 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 10 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 11 | nncan | |- ( ( K e. CC /\ M e. CC ) -> ( K - ( K - M ) ) = M ) |
|
| 12 | 11 | 3adant3 | |- ( ( K e. CC /\ M e. CC /\ N e. CC ) -> ( K - ( K - M ) ) = M ) |
| 13 | nncan | |- ( ( K e. CC /\ N e. CC ) -> ( K - ( K - N ) ) = N ) |
|
| 14 | 13 | 3adant2 | |- ( ( K e. CC /\ M e. CC /\ N e. CC ) -> ( K - ( K - N ) ) = N ) |
| 15 | 12 14 | oveq12d | |- ( ( K e. CC /\ M e. CC /\ N e. CC ) -> ( ( K - ( K - M ) ) ... ( K - ( K - N ) ) ) = ( M ... N ) ) |
| 16 | 8 9 10 15 | syl3an | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K - ( K - M ) ) ... ( K - ( K - N ) ) ) = ( M ... N ) ) |
| 17 | 16 | raleqdv | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( A. k e. ( ( K - ( K - M ) ) ... ( K - ( K - N ) ) ) [. ( K - k ) / j ]. ph <-> A. k e. ( M ... N ) [. ( K - k ) / j ]. ph ) ) |
| 18 | 7 17 | bitrd | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( A. j e. ( ( K - N ) ... ( K - M ) ) ph <-> A. k e. ( M ... N ) [. ( K - k ) / j ]. ph ) ) |
| 19 | 18 | 3coml | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( A. j e. ( ( K - N ) ... ( K - M ) ) ph <-> A. k e. ( M ... N ) [. ( K - k ) / j ]. ph ) ) |