This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two possibly-empty 1-based finite sets of sequential integers are equal iff their endpoints are equal. (Contributed by Paul Chapman, 22-Jun-2011) (Proof shortened by Mario Carneiro, 29-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fz1eqb | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( 1 ... M ) = ( 1 ... N ) <-> M = N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( ( 1 ... M ) = ( 1 ... N ) -> ( # ` ( 1 ... M ) ) = ( # ` ( 1 ... N ) ) ) |
|
| 2 | hashfz1 | |- ( M e. NN0 -> ( # ` ( 1 ... M ) ) = M ) |
|
| 3 | hashfz1 | |- ( N e. NN0 -> ( # ` ( 1 ... N ) ) = N ) |
|
| 4 | 2 3 | eqeqan12d | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( # ` ( 1 ... M ) ) = ( # ` ( 1 ... N ) ) <-> M = N ) ) |
| 5 | 1 4 | imbitrid | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( 1 ... M ) = ( 1 ... N ) -> M = N ) ) |
| 6 | oveq2 | |- ( M = N -> ( 1 ... M ) = ( 1 ... N ) ) |
|
| 7 | 5 6 | impbid1 | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( 1 ... M ) = ( 1 ... N ) <-> M = N ) ) |