This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of restricted functions is determined by their values (for functions with different domains). (Contributed by AV, 6-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvreseq0 | |- ( ( ( F Fn A /\ G Fn C ) /\ ( B C_ A /\ B C_ C ) ) -> ( ( F |` B ) = ( G |` B ) <-> A. x e. B ( F ` x ) = ( G ` x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnssres | |- ( ( F Fn A /\ B C_ A ) -> ( F |` B ) Fn B ) |
|
| 2 | fnssres | |- ( ( G Fn C /\ B C_ C ) -> ( G |` B ) Fn B ) |
|
| 3 | eqfnfv | |- ( ( ( F |` B ) Fn B /\ ( G |` B ) Fn B ) -> ( ( F |` B ) = ( G |` B ) <-> A. x e. B ( ( F |` B ) ` x ) = ( ( G |` B ) ` x ) ) ) |
|
| 4 | fvres | |- ( x e. B -> ( ( F |` B ) ` x ) = ( F ` x ) ) |
|
| 5 | fvres | |- ( x e. B -> ( ( G |` B ) ` x ) = ( G ` x ) ) |
|
| 6 | 4 5 | eqeq12d | |- ( x e. B -> ( ( ( F |` B ) ` x ) = ( ( G |` B ) ` x ) <-> ( F ` x ) = ( G ` x ) ) ) |
| 7 | 6 | ralbiia | |- ( A. x e. B ( ( F |` B ) ` x ) = ( ( G |` B ) ` x ) <-> A. x e. B ( F ` x ) = ( G ` x ) ) |
| 8 | 3 7 | bitrdi | |- ( ( ( F |` B ) Fn B /\ ( G |` B ) Fn B ) -> ( ( F |` B ) = ( G |` B ) <-> A. x e. B ( F ` x ) = ( G ` x ) ) ) |
| 9 | 1 2 8 | syl2an | |- ( ( ( F Fn A /\ B C_ A ) /\ ( G Fn C /\ B C_ C ) ) -> ( ( F |` B ) = ( G |` B ) <-> A. x e. B ( F ` x ) = ( G ` x ) ) ) |
| 10 | 9 | an4s | |- ( ( ( F Fn A /\ G Fn C ) /\ ( B C_ A /\ B C_ C ) ) -> ( ( F |` B ) = ( G |` B ) <-> A. x e. B ( F ` x ) = ( G ` x ) ) ) |