This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A mapping always evaluates to a subset of the substituted expression in the mapping, even if this is a proper class, or we are out of the domain. (Contributed by Mario Carneiro, 13-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmptn.1 | |- ( x = D -> B = C ) |
|
| fvmptn.2 | |- F = ( x e. A |-> B ) |
||
| Assertion | fvmptss2 | |- ( F ` D ) C_ C |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptn.1 | |- ( x = D -> B = C ) |
|
| 2 | fvmptn.2 | |- F = ( x e. A |-> B ) |
|
| 3 | 1 | eleq1d | |- ( x = D -> ( B e. _V <-> C e. _V ) ) |
| 4 | 2 | dmmpt | |- dom F = { x e. A | B e. _V } |
| 5 | 3 4 | elrab2 | |- ( D e. dom F <-> ( D e. A /\ C e. _V ) ) |
| 6 | 1 2 | fvmptg | |- ( ( D e. A /\ C e. _V ) -> ( F ` D ) = C ) |
| 7 | eqimss | |- ( ( F ` D ) = C -> ( F ` D ) C_ C ) |
|
| 8 | 6 7 | syl | |- ( ( D e. A /\ C e. _V ) -> ( F ` D ) C_ C ) |
| 9 | 5 8 | sylbi | |- ( D e. dom F -> ( F ` D ) C_ C ) |
| 10 | ndmfv | |- ( -. D e. dom F -> ( F ` D ) = (/) ) |
|
| 11 | 0ss | |- (/) C_ C |
|
| 12 | 10 11 | eqsstrdi | |- ( -. D e. dom F -> ( F ` D ) C_ C ) |
| 13 | 9 12 | pm2.61i | |- ( F ` D ) C_ C |