This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If (/) is not part of the range of a function F , then A is in the domain of F iff ( FA ) =/= (/) . (Contributed by Scott Fenton, 7-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funeldmb | |- ( ( Fun F /\ -. (/) e. ran F ) -> ( A e. dom F <-> ( F ` A ) =/= (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvelrn | |- ( ( Fun F /\ A e. dom F ) -> ( F ` A ) e. ran F ) |
|
| 2 | 1 | ex | |- ( Fun F -> ( A e. dom F -> ( F ` A ) e. ran F ) ) |
| 3 | 2 | adantr | |- ( ( Fun F /\ ( F ` A ) = (/) ) -> ( A e. dom F -> ( F ` A ) e. ran F ) ) |
| 4 | eleq1 | |- ( ( F ` A ) = (/) -> ( ( F ` A ) e. ran F <-> (/) e. ran F ) ) |
|
| 5 | 4 | adantl | |- ( ( Fun F /\ ( F ` A ) = (/) ) -> ( ( F ` A ) e. ran F <-> (/) e. ran F ) ) |
| 6 | 3 5 | sylibd | |- ( ( Fun F /\ ( F ` A ) = (/) ) -> ( A e. dom F -> (/) e. ran F ) ) |
| 7 | 6 | con3d | |- ( ( Fun F /\ ( F ` A ) = (/) ) -> ( -. (/) e. ran F -> -. A e. dom F ) ) |
| 8 | 7 | impancom | |- ( ( Fun F /\ -. (/) e. ran F ) -> ( ( F ` A ) = (/) -> -. A e. dom F ) ) |
| 9 | ndmfv | |- ( -. A e. dom F -> ( F ` A ) = (/) ) |
|
| 10 | 8 9 | impbid1 | |- ( ( Fun F /\ -. (/) e. ran F ) -> ( ( F ` A ) = (/) <-> -. A e. dom F ) ) |
| 11 | 10 | necon2abid | |- ( ( Fun F /\ -. (/) e. ran F ) -> ( A e. dom F <-> ( F ` A ) =/= (/) ) ) |