This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 4 for funcestrcsetc . (Contributed by AV, 22-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcestrcsetc.e | |- E = ( ExtStrCat ` U ) |
|
| funcestrcsetc.s | |- S = ( SetCat ` U ) |
||
| funcestrcsetc.b | |- B = ( Base ` E ) |
||
| funcestrcsetc.c | |- C = ( Base ` S ) |
||
| funcestrcsetc.u | |- ( ph -> U e. WUni ) |
||
| funcestrcsetc.f | |- ( ph -> F = ( x e. B |-> ( Base ` x ) ) ) |
||
| funcestrcsetc.g | |- ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) ) |
||
| Assertion | funcestrcsetclem4 | |- ( ph -> G Fn ( B X. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcestrcsetc.e | |- E = ( ExtStrCat ` U ) |
|
| 2 | funcestrcsetc.s | |- S = ( SetCat ` U ) |
|
| 3 | funcestrcsetc.b | |- B = ( Base ` E ) |
|
| 4 | funcestrcsetc.c | |- C = ( Base ` S ) |
|
| 5 | funcestrcsetc.u | |- ( ph -> U e. WUni ) |
|
| 6 | funcestrcsetc.f | |- ( ph -> F = ( x e. B |-> ( Base ` x ) ) ) |
|
| 7 | funcestrcsetc.g | |- ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) ) |
|
| 8 | eqid | |- ( x e. B , y e. B |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) = ( x e. B , y e. B |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) |
|
| 9 | ovex | |- ( ( Base ` y ) ^m ( Base ` x ) ) e. _V |
|
| 10 | resiexg | |- ( ( ( Base ` y ) ^m ( Base ` x ) ) e. _V -> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) e. _V ) |
|
| 11 | 9 10 | ax-mp | |- ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) e. _V |
| 12 | 8 11 | fnmpoi | |- ( x e. B , y e. B |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) Fn ( B X. B ) |
| 13 | 7 | fneq1d | |- ( ph -> ( G Fn ( B X. B ) <-> ( x e. B , y e. B |-> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) ) Fn ( B X. B ) ) ) |
| 14 | 12 13 | mpbiri | |- ( ph -> G Fn ( B X. B ) ) |