This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for a faithful functor to also be a faithful functor into the restriction. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fthres2b.a | |- A = ( Base ` C ) |
|
| fthres2b.h | |- H = ( Hom ` C ) |
||
| fthres2b.r | |- ( ph -> R e. ( Subcat ` D ) ) |
||
| fthres2b.s | |- ( ph -> R Fn ( S X. S ) ) |
||
| fthres2b.1 | |- ( ph -> F : A --> S ) |
||
| fthres2b.2 | |- ( ( ph /\ ( x e. A /\ y e. A ) ) -> ( x G y ) : Y --> ( ( F ` x ) R ( F ` y ) ) ) |
||
| Assertion | fthres2b | |- ( ph -> ( F ( C Faith D ) G <-> F ( C Faith ( D |`cat R ) ) G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fthres2b.a | |- A = ( Base ` C ) |
|
| 2 | fthres2b.h | |- H = ( Hom ` C ) |
|
| 3 | fthres2b.r | |- ( ph -> R e. ( Subcat ` D ) ) |
|
| 4 | fthres2b.s | |- ( ph -> R Fn ( S X. S ) ) |
|
| 5 | fthres2b.1 | |- ( ph -> F : A --> S ) |
|
| 6 | fthres2b.2 | |- ( ( ph /\ ( x e. A /\ y e. A ) ) -> ( x G y ) : Y --> ( ( F ` x ) R ( F ` y ) ) ) |
|
| 7 | 1 2 3 4 5 6 | funcres2b | |- ( ph -> ( F ( C Func D ) G <-> F ( C Func ( D |`cat R ) ) G ) ) |
| 8 | 7 | anbi1d | |- ( ph -> ( ( F ( C Func D ) G /\ A. x e. A A. y e. A Fun `' ( x G y ) ) <-> ( F ( C Func ( D |`cat R ) ) G /\ A. x e. A A. y e. A Fun `' ( x G y ) ) ) ) |
| 9 | 1 | isfth | |- ( F ( C Faith D ) G <-> ( F ( C Func D ) G /\ A. x e. A A. y e. A Fun `' ( x G y ) ) ) |
| 10 | 1 | isfth | |- ( F ( C Faith ( D |`cat R ) ) G <-> ( F ( C Func ( D |`cat R ) ) G /\ A. x e. A A. y e. A Fun `' ( x G y ) ) ) |
| 11 | 8 9 10 | 3bitr4g | |- ( ph -> ( F ( C Faith D ) G <-> F ( C Faith ( D |`cat R ) ) G ) ) |