This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a surjective function. As foelrn but with less disjoint vars constraints. (Contributed by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | foelrnf.1 | |- F/_ x F |
|
| Assertion | foelrnf | |- ( ( F : A -onto-> B /\ C e. B ) -> E. x e. A C = ( F ` x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | foelrnf.1 | |- F/_ x F |
|
| 2 | 1 | dffo3f | |- ( F : A -onto-> B <-> ( F : A --> B /\ A. y e. B E. x e. A y = ( F ` x ) ) ) |
| 3 | 2 | simprbi | |- ( F : A -onto-> B -> A. y e. B E. x e. A y = ( F ` x ) ) |
| 4 | eqeq1 | |- ( y = C -> ( y = ( F ` x ) <-> C = ( F ` x ) ) ) |
|
| 5 | 4 | rexbidv | |- ( y = C -> ( E. x e. A y = ( F ` x ) <-> E. x e. A C = ( F ` x ) ) ) |
| 6 | 5 | rspccva | |- ( ( A. y e. B E. x e. A y = ( F ` x ) /\ C e. B ) -> E. x e. A C = ( F ` x ) ) |
| 7 | 3 6 | sylan | |- ( ( F : A -onto-> B /\ C e. B ) -> E. x e. A C = ( F ` x ) ) |