This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of all valid Godel formulas. (Contributed by AV, 20-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fmla | |- ( Fmla ` _om ) = U_ n e. _om ( Fmla ` n ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fmla | |- Fmla = ( n e. suc _om |-> dom ( ( (/) Sat (/) ) ` n ) ) |
|
| 2 | 1 | fveq1i | |- ( Fmla ` _om ) = ( ( n e. suc _om |-> dom ( ( (/) Sat (/) ) ` n ) ) ` _om ) |
| 3 | omex | |- _om e. _V |
|
| 4 | eqidd | |- ( _om e. _V -> ( n e. suc _om |-> dom ( ( (/) Sat (/) ) ` n ) ) = ( n e. suc _om |-> dom ( ( (/) Sat (/) ) ` n ) ) ) |
|
| 5 | fveq2 | |- ( n = _om -> ( ( (/) Sat (/) ) ` n ) = ( ( (/) Sat (/) ) ` _om ) ) |
|
| 6 | 5 | dmeqd | |- ( n = _om -> dom ( ( (/) Sat (/) ) ` n ) = dom ( ( (/) Sat (/) ) ` _om ) ) |
| 7 | 6 | adantl | |- ( ( _om e. _V /\ n = _om ) -> dom ( ( (/) Sat (/) ) ` n ) = dom ( ( (/) Sat (/) ) ` _om ) ) |
| 8 | sucidg | |- ( _om e. _V -> _om e. suc _om ) |
|
| 9 | fvex | |- ( ( (/) Sat (/) ) ` _om ) e. _V |
|
| 10 | 9 | dmex | |- dom ( ( (/) Sat (/) ) ` _om ) e. _V |
| 11 | 10 | a1i | |- ( _om e. _V -> dom ( ( (/) Sat (/) ) ` _om ) e. _V ) |
| 12 | 4 7 8 11 | fvmptd | |- ( _om e. _V -> ( ( n e. suc _om |-> dom ( ( (/) Sat (/) ) ` n ) ) ` _om ) = dom ( ( (/) Sat (/) ) ` _om ) ) |
| 13 | 3 12 | ax-mp | |- ( ( n e. suc _om |-> dom ( ( (/) Sat (/) ) ` n ) ) ` _om ) = dom ( ( (/) Sat (/) ) ` _om ) |
| 14 | 3 | sucid | |- _om e. suc _om |
| 15 | satf0sucom | |- ( _om e. suc _om -> ( ( (/) Sat (/) ) ` _om ) = ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` _om ) ) |
|
| 16 | 14 15 | ax-mp | |- ( ( (/) Sat (/) ) ` _om ) = ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` _om ) |
| 17 | limom | |- Lim _om |
|
| 18 | rdglim2a | |- ( ( _om e. _V /\ Lim _om ) -> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` _om ) = U_ n e. _om ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` n ) ) |
|
| 19 | 3 17 18 | mp2an | |- ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` _om ) = U_ n e. _om ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` n ) |
| 20 | 16 19 | eqtri | |- ( ( (/) Sat (/) ) ` _om ) = U_ n e. _om ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` n ) |
| 21 | 20 | dmeqi | |- dom ( ( (/) Sat (/) ) ` _om ) = dom U_ n e. _om ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` n ) |
| 22 | dmiun | |- dom U_ n e. _om ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` n ) = U_ n e. _om dom ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` n ) |
|
| 23 | elelsuc | |- ( n e. _om -> n e. suc _om ) |
|
| 24 | fmlafv | |- ( n e. suc _om -> ( Fmla ` n ) = dom ( ( (/) Sat (/) ) ` n ) ) |
|
| 25 | 23 24 | syl | |- ( n e. _om -> ( Fmla ` n ) = dom ( ( (/) Sat (/) ) ` n ) ) |
| 26 | satf0sucom | |- ( n e. suc _om -> ( ( (/) Sat (/) ) ` n ) = ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` n ) ) |
|
| 27 | 23 26 | syl | |- ( n e. _om -> ( ( (/) Sat (/) ) ` n ) = ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` n ) ) |
| 28 | 27 | dmeqd | |- ( n e. _om -> dom ( ( (/) Sat (/) ) ` n ) = dom ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` n ) ) |
| 29 | 25 28 | eqtr2d | |- ( n e. _om -> dom ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` n ) = ( Fmla ` n ) ) |
| 30 | 29 | iuneq2i | |- U_ n e. _om dom ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` n ) = U_ n e. _om ( Fmla ` n ) |
| 31 | 21 22 30 | 3eqtri | |- dom ( ( (/) Sat (/) ) ` _om ) = U_ n e. _om ( Fmla ` n ) |
| 32 | 2 13 31 | 3eqtri | |- ( Fmla ` _om ) = U_ n e. _om ( Fmla ` n ) |