This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A filter has the finite intersection property. Remark below Definition 1 of BourbakiTop1 p. I.36. (Contributed by FL, 20-Sep-2007) (Revised by Stefan O'Rear, 28-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | filintn0 | |- ( ( F e. ( Fil ` X ) /\ ( A C_ F /\ A =/= (/) /\ A e. Fin ) ) -> |^| A =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfir | |- ( ( F e. ( Fil ` X ) /\ ( A C_ F /\ A =/= (/) /\ A e. Fin ) ) -> |^| A e. ( fi ` F ) ) |
|
| 2 | filfi | |- ( F e. ( Fil ` X ) -> ( fi ` F ) = F ) |
|
| 3 | 2 | adantr | |- ( ( F e. ( Fil ` X ) /\ ( A C_ F /\ A =/= (/) /\ A e. Fin ) ) -> ( fi ` F ) = F ) |
| 4 | 1 3 | eleqtrd | |- ( ( F e. ( Fil ` X ) /\ ( A C_ F /\ A =/= (/) /\ A e. Fin ) ) -> |^| A e. F ) |
| 5 | fileln0 | |- ( ( F e. ( Fil ` X ) /\ |^| A e. F ) -> |^| A =/= (/) ) |
|
| 6 | 4 5 | syldan | |- ( ( F e. ( Fil ` X ) /\ ( A C_ F /\ A =/= (/) /\ A e. Fin ) ) -> |^| A =/= (/) ) |