This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fcoresf1 . (Contributed by AV, 18-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fcores.f | |- ( ph -> F : A --> B ) |
|
| fcores.e | |- E = ( ran F i^i C ) |
||
| fcores.p | |- P = ( `' F " C ) |
||
| fcores.x | |- X = ( F |` P ) |
||
| fcores.g | |- ( ph -> G : C --> D ) |
||
| fcores.y | |- Y = ( G |` E ) |
||
| Assertion | fcoresf1lem | |- ( ( ph /\ Z e. P ) -> ( ( G o. F ) ` Z ) = ( Y ` ( X ` Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcores.f | |- ( ph -> F : A --> B ) |
|
| 2 | fcores.e | |- E = ( ran F i^i C ) |
|
| 3 | fcores.p | |- P = ( `' F " C ) |
|
| 4 | fcores.x | |- X = ( F |` P ) |
|
| 5 | fcores.g | |- ( ph -> G : C --> D ) |
|
| 6 | fcores.y | |- Y = ( G |` E ) |
|
| 7 | 1 2 3 4 5 6 | fcores | |- ( ph -> ( G o. F ) = ( Y o. X ) ) |
| 8 | 7 | fveq1d | |- ( ph -> ( ( G o. F ) ` Z ) = ( ( Y o. X ) ` Z ) ) |
| 9 | 8 | adantr | |- ( ( ph /\ Z e. P ) -> ( ( G o. F ) ` Z ) = ( ( Y o. X ) ` Z ) ) |
| 10 | 1 2 3 4 | fcoreslem3 | |- ( ph -> X : P -onto-> E ) |
| 11 | fof | |- ( X : P -onto-> E -> X : P --> E ) |
|
| 12 | 10 11 | syl | |- ( ph -> X : P --> E ) |
| 13 | 12 | adantr | |- ( ( ph /\ Z e. P ) -> X : P --> E ) |
| 14 | simpr | |- ( ( ph /\ Z e. P ) -> Z e. P ) |
|
| 15 | 13 14 | fvco3d | |- ( ( ph /\ Z e. P ) -> ( ( Y o. X ) ` Z ) = ( Y ` ( X ` Z ) ) ) |
| 16 | 9 15 | eqtrd | |- ( ( ph /\ Z e. P ) -> ( ( G o. F ) ` Z ) = ( Y ` ( X ` Z ) ) ) |