This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A product representation of falling factorial when A is a nonnegative integer. (Contributed by Scott Fenton, 20-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fallfacval3 | |- ( N e. ( 0 ... A ) -> ( A FallFac N ) = prod_ k e. ( ( A - ( N - 1 ) ) ... A ) k ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz3nn0 | |- ( N e. ( 0 ... A ) -> A e. NN0 ) |
|
| 2 | 1 | nn0cnd | |- ( N e. ( 0 ... A ) -> A e. CC ) |
| 3 | elfznn0 | |- ( N e. ( 0 ... A ) -> N e. NN0 ) |
|
| 4 | fallfacval | |- ( ( A e. CC /\ N e. NN0 ) -> ( A FallFac N ) = prod_ j e. ( 0 ... ( N - 1 ) ) ( A - j ) ) |
|
| 5 | 2 3 4 | syl2anc | |- ( N e. ( 0 ... A ) -> ( A FallFac N ) = prod_ j e. ( 0 ... ( N - 1 ) ) ( A - j ) ) |
| 6 | elfzel2 | |- ( N e. ( 0 ... A ) -> A e. ZZ ) |
|
| 7 | elfzel1 | |- ( N e. ( 0 ... A ) -> 0 e. ZZ ) |
|
| 8 | elfzelz | |- ( N e. ( 0 ... A ) -> N e. ZZ ) |
|
| 9 | peano2zm | |- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
|
| 10 | 8 9 | syl | |- ( N e. ( 0 ... A ) -> ( N - 1 ) e. ZZ ) |
| 11 | elfzelz | |- ( j e. ( 0 ... ( N - 1 ) ) -> j e. ZZ ) |
|
| 12 | 11 | zcnd | |- ( j e. ( 0 ... ( N - 1 ) ) -> j e. CC ) |
| 13 | subcl | |- ( ( A e. CC /\ j e. CC ) -> ( A - j ) e. CC ) |
|
| 14 | 2 12 13 | syl2an | |- ( ( N e. ( 0 ... A ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( A - j ) e. CC ) |
| 15 | oveq2 | |- ( j = ( A - k ) -> ( A - j ) = ( A - ( A - k ) ) ) |
|
| 16 | 6 7 10 14 15 | fprodrev | |- ( N e. ( 0 ... A ) -> prod_ j e. ( 0 ... ( N - 1 ) ) ( A - j ) = prod_ k e. ( ( A - ( N - 1 ) ) ... ( A - 0 ) ) ( A - ( A - k ) ) ) |
| 17 | 2 | subid1d | |- ( N e. ( 0 ... A ) -> ( A - 0 ) = A ) |
| 18 | 17 | oveq2d | |- ( N e. ( 0 ... A ) -> ( ( A - ( N - 1 ) ) ... ( A - 0 ) ) = ( ( A - ( N - 1 ) ) ... A ) ) |
| 19 | 2 | adantr | |- ( ( N e. ( 0 ... A ) /\ k e. ( ( A - ( N - 1 ) ) ... ( A - 0 ) ) ) -> A e. CC ) |
| 20 | elfzelz | |- ( k e. ( ( A - ( N - 1 ) ) ... ( A - 0 ) ) -> k e. ZZ ) |
|
| 21 | 20 | zcnd | |- ( k e. ( ( A - ( N - 1 ) ) ... ( A - 0 ) ) -> k e. CC ) |
| 22 | 21 | adantl | |- ( ( N e. ( 0 ... A ) /\ k e. ( ( A - ( N - 1 ) ) ... ( A - 0 ) ) ) -> k e. CC ) |
| 23 | 19 22 | nncand | |- ( ( N e. ( 0 ... A ) /\ k e. ( ( A - ( N - 1 ) ) ... ( A - 0 ) ) ) -> ( A - ( A - k ) ) = k ) |
| 24 | 18 23 | prodeq12dv | |- ( N e. ( 0 ... A ) -> prod_ k e. ( ( A - ( N - 1 ) ) ... ( A - 0 ) ) ( A - ( A - k ) ) = prod_ k e. ( ( A - ( N - 1 ) ) ... A ) k ) |
| 25 | 5 16 24 | 3eqtrd | |- ( N e. ( 0 ... A ) -> ( A FallFac N ) = prod_ k e. ( ( A - ( N - 1 ) ) ... A ) k ) |