This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function elevating nonnegative reals to a positive integer is one-to-one. Similar to sq11d for positive real bases and positive integer exponents. The base cannot be generalized much further, since if N is even then we have A ^ N = -u A ^ N . (Contributed by SN, 14-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | exp11nnd.1 | |- ( ph -> A e. RR+ ) |
|
| exp11nnd.2 | |- ( ph -> B e. RR+ ) |
||
| exp11nnd.3 | |- ( ph -> N e. NN ) |
||
| exp11nnd.4 | |- ( ph -> ( A ^ N ) = ( B ^ N ) ) |
||
| Assertion | exp11nnd | |- ( ph -> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp11nnd.1 | |- ( ph -> A e. RR+ ) |
|
| 2 | exp11nnd.2 | |- ( ph -> B e. RR+ ) |
|
| 3 | exp11nnd.3 | |- ( ph -> N e. NN ) |
|
| 4 | exp11nnd.4 | |- ( ph -> ( A ^ N ) = ( B ^ N ) ) |
|
| 5 | 1 | rpred | |- ( ph -> A e. RR ) |
| 6 | 3 | nnnn0d | |- ( ph -> N e. NN0 ) |
| 7 | 5 6 | reexpcld | |- ( ph -> ( A ^ N ) e. RR ) |
| 8 | 2 | rpred | |- ( ph -> B e. RR ) |
| 9 | 8 6 | reexpcld | |- ( ph -> ( B ^ N ) e. RR ) |
| 10 | 7 9 | lttri3d | |- ( ph -> ( ( A ^ N ) = ( B ^ N ) <-> ( -. ( A ^ N ) < ( B ^ N ) /\ -. ( B ^ N ) < ( A ^ N ) ) ) ) |
| 11 | 4 10 | mpbid | |- ( ph -> ( -. ( A ^ N ) < ( B ^ N ) /\ -. ( B ^ N ) < ( A ^ N ) ) ) |
| 12 | 1 2 3 | ltexp1d | |- ( ph -> ( A < B <-> ( A ^ N ) < ( B ^ N ) ) ) |
| 13 | 12 | notbid | |- ( ph -> ( -. A < B <-> -. ( A ^ N ) < ( B ^ N ) ) ) |
| 14 | 2 1 3 | ltexp1d | |- ( ph -> ( B < A <-> ( B ^ N ) < ( A ^ N ) ) ) |
| 15 | 14 | notbid | |- ( ph -> ( -. B < A <-> -. ( B ^ N ) < ( A ^ N ) ) ) |
| 16 | 13 15 | anbi12d | |- ( ph -> ( ( -. A < B /\ -. B < A ) <-> ( -. ( A ^ N ) < ( B ^ N ) /\ -. ( B ^ N ) < ( A ^ N ) ) ) ) |
| 17 | 11 16 | mpbird | |- ( ph -> ( -. A < B /\ -. B < A ) ) |
| 18 | 5 8 | lttri3d | |- ( ph -> ( A = B <-> ( -. A < B /\ -. B < A ) ) ) |
| 19 | 17 18 | mpbird | |- ( ph -> A = B ) |