This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for eupth2lem3 . (Contributed by AV, 21-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | trlsegvdeg.v | |- V = ( Vtx ` G ) |
|
| trlsegvdeg.i | |- I = ( iEdg ` G ) |
||
| trlsegvdeg.f | |- ( ph -> Fun I ) |
||
| trlsegvdeg.n | |- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
||
| trlsegvdeg.u | |- ( ph -> U e. V ) |
||
| trlsegvdeg.w | |- ( ph -> F ( Trails ` G ) P ) |
||
| trlsegvdeg.vx | |- ( ph -> ( Vtx ` X ) = V ) |
||
| trlsegvdeg.vy | |- ( ph -> ( Vtx ` Y ) = V ) |
||
| trlsegvdeg.vz | |- ( ph -> ( Vtx ` Z ) = V ) |
||
| trlsegvdeg.ix | |- ( ph -> ( iEdg ` X ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
||
| trlsegvdeg.iy | |- ( ph -> ( iEdg ` Y ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
||
| trlsegvdeg.iz | |- ( ph -> ( iEdg ` Z ) = ( I |` ( F " ( 0 ... N ) ) ) ) |
||
| Assertion | eupth2lem3lem2 | |- ( ph -> ( ( VtxDeg ` Y ) ` U ) e. NN0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlsegvdeg.v | |- V = ( Vtx ` G ) |
|
| 2 | trlsegvdeg.i | |- I = ( iEdg ` G ) |
|
| 3 | trlsegvdeg.f | |- ( ph -> Fun I ) |
|
| 4 | trlsegvdeg.n | |- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
|
| 5 | trlsegvdeg.u | |- ( ph -> U e. V ) |
|
| 6 | trlsegvdeg.w | |- ( ph -> F ( Trails ` G ) P ) |
|
| 7 | trlsegvdeg.vx | |- ( ph -> ( Vtx ` X ) = V ) |
|
| 8 | trlsegvdeg.vy | |- ( ph -> ( Vtx ` Y ) = V ) |
|
| 9 | trlsegvdeg.vz | |- ( ph -> ( Vtx ` Z ) = V ) |
|
| 10 | trlsegvdeg.ix | |- ( ph -> ( iEdg ` X ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
|
| 11 | trlsegvdeg.iy | |- ( ph -> ( iEdg ` Y ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
|
| 12 | trlsegvdeg.iz | |- ( ph -> ( iEdg ` Z ) = ( I |` ( F " ( 0 ... N ) ) ) ) |
|
| 13 | 5 8 | eleqtrrd | |- ( ph -> U e. ( Vtx ` Y ) ) |
| 14 | 13 | elfvexd | |- ( ph -> Y e. _V ) |
| 15 | 1 2 3 4 5 6 7 8 9 10 11 12 | trlsegvdeglem7 | |- ( ph -> dom ( iEdg ` Y ) e. Fin ) |
| 16 | eqid | |- ( Vtx ` Y ) = ( Vtx ` Y ) |
|
| 17 | eqid | |- ( iEdg ` Y ) = ( iEdg ` Y ) |
|
| 18 | eqid | |- dom ( iEdg ` Y ) = dom ( iEdg ` Y ) |
|
| 19 | 16 17 18 | vtxdgfisf | |- ( ( Y e. _V /\ dom ( iEdg ` Y ) e. Fin ) -> ( VtxDeg ` Y ) : ( Vtx ` Y ) --> NN0 ) |
| 20 | 14 15 19 | syl2anc | |- ( ph -> ( VtxDeg ` Y ) : ( Vtx ` Y ) --> NN0 ) |
| 21 | 20 13 | ffvelcdmd | |- ( ph -> ( ( VtxDeg ` Y ) ` U ) e. NN0 ) |