This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A variable elimination law for equality with no distinct variable requirements. Compare equvini . Usage of this theorem is discouraged because it depends on ax-13 . Use equvelv when possible. (Contributed by NM, 1-Mar-2013) (Proof shortened by Mario Carneiro, 17-Oct-2016) (Proof shortened by Wolf Lammen, 15-Jun-2019) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | equvel | |- ( A. z ( z = x <-> z = y ) -> x = y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albi | |- ( A. z ( z = x <-> z = y ) -> ( A. z z = x <-> A. z z = y ) ) |
|
| 2 | ax6e | |- E. z z = y |
|
| 3 | biimpr | |- ( ( z = x <-> z = y ) -> ( z = y -> z = x ) ) |
|
| 4 | ax7 | |- ( z = x -> ( z = y -> x = y ) ) |
|
| 5 | 3 4 | syli | |- ( ( z = x <-> z = y ) -> ( z = y -> x = y ) ) |
| 6 | 5 | com12 | |- ( z = y -> ( ( z = x <-> z = y ) -> x = y ) ) |
| 7 | 2 6 | eximii | |- E. z ( ( z = x <-> z = y ) -> x = y ) |
| 8 | 7 | 19.35i | |- ( A. z ( z = x <-> z = y ) -> E. z x = y ) |
| 9 | 4 | spsd | |- ( z = x -> ( A. z z = y -> x = y ) ) |
| 10 | 9 | sps | |- ( A. z z = x -> ( A. z z = y -> x = y ) ) |
| 11 | 10 | a1dd | |- ( A. z z = x -> ( A. z z = y -> ( E. z x = y -> x = y ) ) ) |
| 12 | nfeqf | |- ( ( -. A. z z = x /\ -. A. z z = y ) -> F/ z x = y ) |
|
| 13 | 12 | 19.9d | |- ( ( -. A. z z = x /\ -. A. z z = y ) -> ( E. z x = y -> x = y ) ) |
| 14 | 13 | ex | |- ( -. A. z z = x -> ( -. A. z z = y -> ( E. z x = y -> x = y ) ) ) |
| 15 | 11 14 | bija | |- ( ( A. z z = x <-> A. z z = y ) -> ( E. z x = y -> x = y ) ) |
| 16 | 1 8 15 | sylc | |- ( A. z ( z = x <-> z = y ) -> x = y ) |