This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of equsex . This proves the result directly, instead of as a corollary of equsal via equs4 . Note in particular that only existential quantifiers appear in the proof and that the only step requiring ax-13 is ax6e . This proof mimics that of equsal (in particular, note that pm5.32i , exbii , 19.41 , mpbiran correspond respectively to pm5.74i , albii , 19.23 , a1bi ). (Contributed by BJ, 20-Aug-2020) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | equsal.1 | |- F/ x ps |
|
| equsal.2 | |- ( x = y -> ( ph <-> ps ) ) |
||
| Assertion | equsexALT | |- ( E. x ( x = y /\ ph ) <-> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equsal.1 | |- F/ x ps |
|
| 2 | equsal.2 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 3 | 2 | pm5.32i | |- ( ( x = y /\ ph ) <-> ( x = y /\ ps ) ) |
| 4 | 3 | exbii | |- ( E. x ( x = y /\ ph ) <-> E. x ( x = y /\ ps ) ) |
| 5 | ax6e | |- E. x x = y |
|
| 6 | 1 | 19.41 | |- ( E. x ( x = y /\ ps ) <-> ( E. x x = y /\ ps ) ) |
| 7 | 5 6 | mpbiran | |- ( E. x ( x = y /\ ps ) <-> ps ) |
| 8 | 4 7 | bitri | |- ( E. x ( x = y /\ ph ) <-> ps ) |