This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used in proofs of substitution properties. If there is a disjoint variable condition on x , y , then sbalex can be used instead; if y is not free in ph , then equs45f can be used. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 14-May-1993) (Revised by BJ, 1-Oct-2018) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | equs5 | |- ( -. A. x x = y -> ( E. x ( x = y /\ ph ) <-> A. x ( x = y -> ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfna1 | |- F/ x -. A. x x = y |
|
| 2 | nfa1 | |- F/ x A. x ( x = y -> ph ) |
|
| 3 | axc15 | |- ( -. A. x x = y -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) ) |
|
| 4 | 3 | impd | |- ( -. A. x x = y -> ( ( x = y /\ ph ) -> A. x ( x = y -> ph ) ) ) |
| 5 | 1 2 4 | exlimd | |- ( -. A. x x = y -> ( E. x ( x = y /\ ph ) -> A. x ( x = y -> ph ) ) ) |
| 6 | equs4 | |- ( A. x ( x = y -> ph ) -> E. x ( x = y /\ ph ) ) |
|
| 7 | 5 6 | impbid1 | |- ( -. A. x x = y -> ( E. x ( x = y /\ ph ) <-> A. x ( x = y -> ph ) ) ) |