This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule used to change bound variables, using implicit substitution. Version of cbval2 with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 22-Dec-2003) (Revised by BJ, 16-Jun-2019) (Proof shortened by GG, 10-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbval2v.1 | |- F/ z ph |
|
| cbval2v.2 | |- F/ w ph |
||
| cbval2v.3 | |- F/ x ps |
||
| cbval2v.4 | |- F/ y ps |
||
| cbval2v.5 | |- ( ( x = z /\ y = w ) -> ( ph <-> ps ) ) |
||
| Assertion | cbval2v | |- ( A. x A. y ph <-> A. z A. w ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbval2v.1 | |- F/ z ph |
|
| 2 | cbval2v.2 | |- F/ w ph |
|
| 3 | cbval2v.3 | |- F/ x ps |
|
| 4 | cbval2v.4 | |- F/ y ps |
|
| 5 | cbval2v.5 | |- ( ( x = z /\ y = w ) -> ( ph <-> ps ) ) |
|
| 6 | 1 | nfal | |- F/ z A. y ph |
| 7 | 3 | nfal | |- F/ x A. w ps |
| 8 | nfv | |- F/ y x = z |
|
| 9 | nfv | |- F/ w x = z |
|
| 10 | 2 | a1i | |- ( x = z -> F/ w ph ) |
| 11 | 4 | a1i | |- ( x = z -> F/ y ps ) |
| 12 | 5 | ex | |- ( x = z -> ( y = w -> ( ph <-> ps ) ) ) |
| 13 | 8 9 10 11 12 | cbv2w | |- ( x = z -> ( A. y ph <-> A. w ps ) ) |
| 14 | 6 7 13 | cbvalv1 | |- ( A. x A. y ph <-> A. z A. w ps ) |