This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of a set is either equal to another element of the set or a member of the difference of the set and the singleton containing the other element. (Contributed by AV, 25-Aug-2020) (Proof shortened by JJ, 23-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqoreldif | |- ( B e. C -> ( A e. C <-> ( A = B \/ A e. ( C \ { B } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A e. C /\ -. A = B ) -> A e. C ) |
|
| 2 | elsni | |- ( A e. { B } -> A = B ) |
|
| 3 | 2 | con3i | |- ( -. A = B -> -. A e. { B } ) |
| 4 | 3 | adantl | |- ( ( A e. C /\ -. A = B ) -> -. A e. { B } ) |
| 5 | 1 4 | eldifd | |- ( ( A e. C /\ -. A = B ) -> A e. ( C \ { B } ) ) |
| 6 | 5 | ex | |- ( A e. C -> ( -. A = B -> A e. ( C \ { B } ) ) ) |
| 7 | 6 | orrd | |- ( A e. C -> ( A = B \/ A e. ( C \ { B } ) ) ) |
| 8 | eleq1a | |- ( B e. C -> ( A = B -> A e. C ) ) |
|
| 9 | eldifi | |- ( A e. ( C \ { B } ) -> A e. C ) |
|
| 10 | 9 | a1i | |- ( B e. C -> ( A e. ( C \ { B } ) -> A e. C ) ) |
| 11 | 8 10 | jaod | |- ( B e. C -> ( ( A = B \/ A e. ( C \ { B } ) ) -> A e. C ) ) |
| 12 | 7 11 | impbid2 | |- ( B e. C -> ( A e. C <-> ( A = B \/ A e. ( C \ { B } ) ) ) ) |