This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derive equality of functions from equality of their values. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqfnfv3 | |- ( ( F Fn A /\ G Fn B ) -> ( F = G <-> ( B C_ A /\ A. x e. A ( x e. B /\ ( F ` x ) = ( G ` x ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqfnfv2 | |- ( ( F Fn A /\ G Fn B ) -> ( F = G <-> ( A = B /\ A. x e. A ( F ` x ) = ( G ` x ) ) ) ) |
|
| 2 | eqss | |- ( A = B <-> ( A C_ B /\ B C_ A ) ) |
|
| 3 | 2 | biancomi | |- ( A = B <-> ( B C_ A /\ A C_ B ) ) |
| 4 | 3 | anbi1i | |- ( ( A = B /\ A. x e. A ( F ` x ) = ( G ` x ) ) <-> ( ( B C_ A /\ A C_ B ) /\ A. x e. A ( F ` x ) = ( G ` x ) ) ) |
| 5 | anass | |- ( ( ( B C_ A /\ A C_ B ) /\ A. x e. A ( F ` x ) = ( G ` x ) ) <-> ( B C_ A /\ ( A C_ B /\ A. x e. A ( F ` x ) = ( G ` x ) ) ) ) |
|
| 6 | dfss3 | |- ( A C_ B <-> A. x e. A x e. B ) |
|
| 7 | 6 | anbi1i | |- ( ( A C_ B /\ A. x e. A ( F ` x ) = ( G ` x ) ) <-> ( A. x e. A x e. B /\ A. x e. A ( F ` x ) = ( G ` x ) ) ) |
| 8 | r19.26 | |- ( A. x e. A ( x e. B /\ ( F ` x ) = ( G ` x ) ) <-> ( A. x e. A x e. B /\ A. x e. A ( F ` x ) = ( G ` x ) ) ) |
|
| 9 | 7 8 | bitr4i | |- ( ( A C_ B /\ A. x e. A ( F ` x ) = ( G ` x ) ) <-> A. x e. A ( x e. B /\ ( F ` x ) = ( G ` x ) ) ) |
| 10 | 9 | anbi2i | |- ( ( B C_ A /\ ( A C_ B /\ A. x e. A ( F ` x ) = ( G ` x ) ) ) <-> ( B C_ A /\ A. x e. A ( x e. B /\ ( F ` x ) = ( G ` x ) ) ) ) |
| 11 | 4 5 10 | 3bitri | |- ( ( A = B /\ A. x e. A ( F ` x ) = ( G ` x ) ) <-> ( B C_ A /\ A. x e. A ( x e. B /\ ( F ` x ) = ( G ` x ) ) ) ) |
| 12 | 1 11 | bitrdi | |- ( ( F Fn A /\ G Fn B ) -> ( F = G <-> ( B C_ A /\ A. x e. A ( x e. B /\ ( F ` x ) = ( G ` x ) ) ) ) ) |