This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A morphism of non-unital rings is a function. (Contributed by AV, 27-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngcbas.c | |- C = ( RngCat ` U ) |
|
| rngcbas.b | |- B = ( Base ` C ) |
||
| rngcbas.u | |- ( ph -> U e. V ) |
||
| rngchomfval.h | |- H = ( Hom ` C ) |
||
| rngchom.x | |- ( ph -> X e. B ) |
||
| rngchom.y | |- ( ph -> Y e. B ) |
||
| Assertion | elrngchom | |- ( ph -> ( F e. ( X H Y ) -> F : ( Base ` X ) --> ( Base ` Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcbas.c | |- C = ( RngCat ` U ) |
|
| 2 | rngcbas.b | |- B = ( Base ` C ) |
|
| 3 | rngcbas.u | |- ( ph -> U e. V ) |
|
| 4 | rngchomfval.h | |- H = ( Hom ` C ) |
|
| 5 | rngchom.x | |- ( ph -> X e. B ) |
|
| 6 | rngchom.y | |- ( ph -> Y e. B ) |
|
| 7 | 1 2 3 4 5 6 | rngchom | |- ( ph -> ( X H Y ) = ( X RngHom Y ) ) |
| 8 | 7 | eleq2d | |- ( ph -> ( F e. ( X H Y ) <-> F e. ( X RngHom Y ) ) ) |
| 9 | eqid | |- ( Base ` X ) = ( Base ` X ) |
|
| 10 | eqid | |- ( Base ` Y ) = ( Base ` Y ) |
|
| 11 | 9 10 | rnghmf | |- ( F e. ( X RngHom Y ) -> F : ( Base ` X ) --> ( Base ` Y ) ) |
| 12 | 8 11 | biimtrdi | |- ( ph -> ( F e. ( X H Y ) -> F : ( Base ` X ) --> ( Base ` Y ) ) ) |