This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a restricted class abstraction, using implicit substitution. (Closed theorem version of elrab3 .) (Contributed by Thierry Arnoux, 31-Aug-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrab3t | |- ( ( A. x ( x = A -> ( ph <-> ps ) ) /\ A e. B ) -> ( A e. { x e. B | ph } <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | |- { x e. B | ph } = { x | ( x e. B /\ ph ) } |
|
| 2 | 1 | eleq2i | |- ( A e. { x e. B | ph } <-> A e. { x | ( x e. B /\ ph ) } ) |
| 3 | id | |- ( A e. B -> A e. B ) |
|
| 4 | nfa1 | |- F/ x A. x ( x = A -> ( ph <-> ps ) ) |
|
| 5 | nfv | |- F/ x A e. B |
|
| 6 | 4 5 | nfan | |- F/ x ( A. x ( x = A -> ( ph <-> ps ) ) /\ A e. B ) |
| 7 | sp | |- ( A. x ( x = A -> ( ph <-> ps ) ) -> ( x = A -> ( ph <-> ps ) ) ) |
|
| 8 | eleq1 | |- ( x = A -> ( x e. B <-> A e. B ) ) |
|
| 9 | 8 | biimparc | |- ( ( A e. B /\ x = A ) -> x e. B ) |
| 10 | 9 | biantrurd | |- ( ( A e. B /\ x = A ) -> ( ph <-> ( x e. B /\ ph ) ) ) |
| 11 | 10 | bibi1d | |- ( ( A e. B /\ x = A ) -> ( ( ph <-> ps ) <-> ( ( x e. B /\ ph ) <-> ps ) ) ) |
| 12 | 11 | pm5.74da | |- ( A e. B -> ( ( x = A -> ( ph <-> ps ) ) <-> ( x = A -> ( ( x e. B /\ ph ) <-> ps ) ) ) ) |
| 13 | 7 12 | syl5ibcom | |- ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A e. B -> ( x = A -> ( ( x e. B /\ ph ) <-> ps ) ) ) ) |
| 14 | 13 | imp | |- ( ( A. x ( x = A -> ( ph <-> ps ) ) /\ A e. B ) -> ( x = A -> ( ( x e. B /\ ph ) <-> ps ) ) ) |
| 15 | 6 14 | alrimi | |- ( ( A. x ( x = A -> ( ph <-> ps ) ) /\ A e. B ) -> A. x ( x = A -> ( ( x e. B /\ ph ) <-> ps ) ) ) |
| 16 | elabgt | |- ( ( A e. B /\ A. x ( x = A -> ( ( x e. B /\ ph ) <-> ps ) ) ) -> ( A e. { x | ( x e. B /\ ph ) } <-> ps ) ) |
|
| 17 | 3 15 16 | syl2an2 | |- ( ( A. x ( x = A -> ( ph <-> ps ) ) /\ A e. B ) -> ( A e. { x | ( x e. B /\ ph ) } <-> ps ) ) |
| 18 | 2 17 | bitrid | |- ( ( A. x ( x = A -> ( ph <-> ps ) ) /\ A e. B ) -> ( A e. { x e. B | ph } <-> ps ) ) |