This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The first component of an element of a disjoint union is either (/) or 1o . (Contributed by AV, 26-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldju1st | |- ( X e. ( A |_| B ) -> ( ( 1st ` X ) = (/) \/ ( 1st ` X ) = 1o ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djuss | |- ( A |_| B ) C_ ( { (/) , 1o } X. ( A u. B ) ) |
|
| 2 | ssel2 | |- ( ( ( A |_| B ) C_ ( { (/) , 1o } X. ( A u. B ) ) /\ X e. ( A |_| B ) ) -> X e. ( { (/) , 1o } X. ( A u. B ) ) ) |
|
| 3 | xp1st | |- ( X e. ( { (/) , 1o } X. ( A u. B ) ) -> ( 1st ` X ) e. { (/) , 1o } ) |
|
| 4 | elpri | |- ( ( 1st ` X ) e. { (/) , 1o } -> ( ( 1st ` X ) = (/) \/ ( 1st ` X ) = 1o ) ) |
|
| 5 | 2 3 4 | 3syl | |- ( ( ( A |_| B ) C_ ( { (/) , 1o } X. ( A u. B ) ) /\ X e. ( A |_| B ) ) -> ( ( 1st ` X ) = (/) \/ ( 1st ` X ) = 1o ) ) |
| 6 | 1 5 | mpan | |- ( X e. ( A |_| B ) -> ( ( 1st ` X ) = (/) \/ ( 1st ` X ) = 1o ) ) |