This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of efne0 as of 14-Nov-2025. The exponential of a complex number is nonzero. Corollary 15-4.3 of Gleason p. 309. (Contributed by NM, 13-Jan-2006) (Revised by Mario Carneiro, 29-Apr-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efne0OLD | |- ( A e. CC -> ( exp ` A ) =/= 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1ne0 | |- 1 =/= 0 |
|
| 2 | oveq1 | |- ( ( exp ` A ) = 0 -> ( ( exp ` A ) x. ( exp ` -u A ) ) = ( 0 x. ( exp ` -u A ) ) ) |
|
| 3 | efcan | |- ( A e. CC -> ( ( exp ` A ) x. ( exp ` -u A ) ) = 1 ) |
|
| 4 | negcl | |- ( A e. CC -> -u A e. CC ) |
|
| 5 | efcl | |- ( -u A e. CC -> ( exp ` -u A ) e. CC ) |
|
| 6 | 4 5 | syl | |- ( A e. CC -> ( exp ` -u A ) e. CC ) |
| 7 | 6 | mul02d | |- ( A e. CC -> ( 0 x. ( exp ` -u A ) ) = 0 ) |
| 8 | 3 7 | eqeq12d | |- ( A e. CC -> ( ( ( exp ` A ) x. ( exp ` -u A ) ) = ( 0 x. ( exp ` -u A ) ) <-> 1 = 0 ) ) |
| 9 | 2 8 | imbitrid | |- ( A e. CC -> ( ( exp ` A ) = 0 -> 1 = 0 ) ) |
| 10 | 9 | necon3d | |- ( A e. CC -> ( 1 =/= 0 -> ( exp ` A ) =/= 0 ) ) |
| 11 | 1 10 | mpi | |- ( A e. CC -> ( exp ` A ) =/= 0 ) |