This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015) (Revised by Mario Carneiro, 27-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| efgval.r | |- .~ = ( ~FG ` I ) |
||
| Assertion | efgi1 | |- ( ( A e. W /\ N e. ( 0 ... ( # ` A ) ) /\ J e. I ) -> A .~ ( A splice <. N , N , <" <. J , 1o >. <. J , (/) >. "> >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 2 | efgval.r | |- .~ = ( ~FG ` I ) |
|
| 3 | 1oex | |- 1o e. _V |
|
| 4 | 3 | prid2 | |- 1o e. { (/) , 1o } |
| 5 | df2o3 | |- 2o = { (/) , 1o } |
|
| 6 | 4 5 | eleqtrri | |- 1o e. 2o |
| 7 | 1 2 | efgi | |- ( ( ( A e. W /\ N e. ( 0 ... ( # ` A ) ) ) /\ ( J e. I /\ 1o e. 2o ) ) -> A .~ ( A splice <. N , N , <" <. J , 1o >. <. J , ( 1o \ 1o ) >. "> >. ) ) |
| 8 | 6 7 | mpanr2 | |- ( ( ( A e. W /\ N e. ( 0 ... ( # ` A ) ) ) /\ J e. I ) -> A .~ ( A splice <. N , N , <" <. J , 1o >. <. J , ( 1o \ 1o ) >. "> >. ) ) |
| 9 | 8 | 3impa | |- ( ( A e. W /\ N e. ( 0 ... ( # ` A ) ) /\ J e. I ) -> A .~ ( A splice <. N , N , <" <. J , 1o >. <. J , ( 1o \ 1o ) >. "> >. ) ) |
| 10 | tru | |- T. |
|
| 11 | eqidd | |- ( T. -> <. J , 1o >. = <. J , 1o >. ) |
|
| 12 | difid | |- ( 1o \ 1o ) = (/) |
|
| 13 | 12 | opeq2i | |- <. J , ( 1o \ 1o ) >. = <. J , (/) >. |
| 14 | 13 | a1i | |- ( T. -> <. J , ( 1o \ 1o ) >. = <. J , (/) >. ) |
| 15 | 11 14 | s2eqd | |- ( T. -> <" <. J , 1o >. <. J , ( 1o \ 1o ) >. "> = <" <. J , 1o >. <. J , (/) >. "> ) |
| 16 | oteq3 | |- ( <" <. J , 1o >. <. J , ( 1o \ 1o ) >. "> = <" <. J , 1o >. <. J , (/) >. "> -> <. N , N , <" <. J , 1o >. <. J , ( 1o \ 1o ) >. "> >. = <. N , N , <" <. J , 1o >. <. J , (/) >. "> >. ) |
|
| 17 | 10 15 16 | mp2b | |- <. N , N , <" <. J , 1o >. <. J , ( 1o \ 1o ) >. "> >. = <. N , N , <" <. J , 1o >. <. J , (/) >. "> >. |
| 18 | 17 | oveq2i | |- ( A splice <. N , N , <" <. J , 1o >. <. J , ( 1o \ 1o ) >. "> >. ) = ( A splice <. N , N , <" <. J , 1o >. <. J , (/) >. "> >. ) |
| 19 | 9 18 | breqtrdi | |- ( ( A e. W /\ N e. ( 0 ... ( # ` A ) ) /\ J e. I ) -> A .~ ( A splice <. N , N , <" <. J , 1o >. <. J , (/) >. "> >. ) ) |