This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eelT01.1 | |- ( T. -> ph ) |
|
| eelT01.2 | |- ps |
||
| eelT01.3 | |- ( ch -> th ) |
||
| eelT01.4 | |- ( ( ph /\ ps /\ th ) -> ta ) |
||
| Assertion | eelT01 | |- ( ch -> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eelT01.1 | |- ( T. -> ph ) |
|
| 2 | eelT01.2 | |- ps |
|
| 3 | eelT01.3 | |- ( ch -> th ) |
|
| 4 | eelT01.4 | |- ( ( ph /\ ps /\ th ) -> ta ) |
|
| 5 | 3anass | |- ( ( T. /\ ps /\ ch ) <-> ( T. /\ ( ps /\ ch ) ) ) |
|
| 6 | truan | |- ( ( T. /\ ( ps /\ ch ) ) <-> ( ps /\ ch ) ) |
|
| 7 | simpr | |- ( ( ps /\ ch ) -> ch ) |
|
| 8 | 2 | jctl | |- ( ch -> ( ps /\ ch ) ) |
| 9 | 7 8 | impbii | |- ( ( ps /\ ch ) <-> ch ) |
| 10 | 5 6 9 | 3bitri | |- ( ( T. /\ ps /\ ch ) <-> ch ) |
| 11 | 1 4 | syl3an1 | |- ( ( T. /\ ps /\ th ) -> ta ) |
| 12 | 3 11 | syl3an3 | |- ( ( T. /\ ps /\ ch ) -> ta ) |
| 13 | 10 12 | sylbir | |- ( ch -> ta ) |