This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eel0T1.1 | |- ph |
|
| eel0T1.2 | |- ( T. -> ps ) |
||
| eel0T1.3 | |- ( ch -> th ) |
||
| eel0T1.4 | |- ( ( ph /\ ps /\ th ) -> ta ) |
||
| Assertion | eel0T1 | |- ( ch -> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eel0T1.1 | |- ph |
|
| 2 | eel0T1.2 | |- ( T. -> ps ) |
|
| 3 | eel0T1.3 | |- ( ch -> th ) |
|
| 4 | eel0T1.4 | |- ( ( ph /\ ps /\ th ) -> ta ) |
|
| 5 | 3anass | |- ( ( ph /\ T. /\ ch ) <-> ( ph /\ ( T. /\ ch ) ) ) |
|
| 6 | simpr | |- ( ( ph /\ ( T. /\ ch ) ) -> ( T. /\ ch ) ) |
|
| 7 | 1 | jctl | |- ( ( T. /\ ch ) -> ( ph /\ ( T. /\ ch ) ) ) |
| 8 | 6 7 | impbii | |- ( ( ph /\ ( T. /\ ch ) ) <-> ( T. /\ ch ) ) |
| 9 | truan | |- ( ( T. /\ ch ) <-> ch ) |
|
| 10 | 5 8 9 | 3bitri | |- ( ( ph /\ T. /\ ch ) <-> ch ) |
| 11 | 2 4 | syl3an2 | |- ( ( ph /\ T. /\ th ) -> ta ) |
| 12 | 3 11 | syl3an3 | |- ( ( ph /\ T. /\ ch ) -> ta ) |
| 13 | 10 12 | sylbir | |- ( ch -> ta ) |