This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of the singleton of the singleton of a singleton. (Contributed by NM, 15-Sep-2004) (Revised by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmsnsnsn | |- dom { { { A } } } = { A } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- x e. _V |
|
| 2 | 1 | opid | |- <. x , x >. = { { x } } |
| 3 | sneq | |- ( x = A -> { x } = { A } ) |
|
| 4 | 3 | sneqd | |- ( x = A -> { { x } } = { { A } } ) |
| 5 | 2 4 | eqtrid | |- ( x = A -> <. x , x >. = { { A } } ) |
| 6 | 5 | sneqd | |- ( x = A -> { <. x , x >. } = { { { A } } } ) |
| 7 | 6 | dmeqd | |- ( x = A -> dom { <. x , x >. } = dom { { { A } } } ) |
| 8 | 7 3 | eqeq12d | |- ( x = A -> ( dom { <. x , x >. } = { x } <-> dom { { { A } } } = { A } ) ) |
| 9 | 1 | dmsnop | |- dom { <. x , x >. } = { x } |
| 10 | 8 9 | vtoclg | |- ( A e. _V -> dom { { { A } } } = { A } ) |
| 11 | 0ex | |- (/) e. _V |
|
| 12 | 11 | snid | |- (/) e. { (/) } |
| 13 | dmsn0el | |- ( (/) e. { (/) } -> dom { { (/) } } = (/) ) |
|
| 14 | 12 13 | ax-mp | |- dom { { (/) } } = (/) |
| 15 | snprc | |- ( -. A e. _V <-> { A } = (/) ) |
|
| 16 | 15 | biimpi | |- ( -. A e. _V -> { A } = (/) ) |
| 17 | 16 | sneqd | |- ( -. A e. _V -> { { A } } = { (/) } ) |
| 18 | 17 | sneqd | |- ( -. A e. _V -> { { { A } } } = { { (/) } } ) |
| 19 | 18 | dmeqd | |- ( -. A e. _V -> dom { { { A } } } = dom { { (/) } } ) |
| 20 | 14 19 16 | 3eqtr4a | |- ( -. A e. _V -> dom { { { A } } } = { A } ) |
| 21 | 10 20 | pm2.61i | |- dom { { { A } } } = { A } |