This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Disjoint range Cartesian product, special case. (Contributed by Peter Mazsa, 25-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjsuc | |- ( A e. V -> ( Disj ( R |X. ( `' _E |` suc A ) ) <-> ( Disj ( R |X. ( `' _E |` A ) ) /\ A. u e. A ( ( u i^i A ) = (/) \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjsuc2 | |- ( A e. V -> ( A. u e. ( A u. { A } ) A. v e. ( A u. { A } ) ( u = v \/ ( [ u ] ( R |X. `' _E ) i^i [ v ] ( R |X. `' _E ) ) = (/) ) <-> ( A. u e. A A. v e. A ( u = v \/ ( [ u ] ( R |X. `' _E ) i^i [ v ] ( R |X. `' _E ) ) = (/) ) /\ A. u e. A ( ( u i^i A ) = (/) \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) ) ) |
|
| 2 | df-suc | |- suc A = ( A u. { A } ) |
|
| 3 | 2 | reseq2i | |- ( `' _E |` suc A ) = ( `' _E |` ( A u. { A } ) ) |
| 4 | 3 | xrneq2i | |- ( R |X. ( `' _E |` suc A ) ) = ( R |X. ( `' _E |` ( A u. { A } ) ) ) |
| 5 | 4 | disjeqi | |- ( Disj ( R |X. ( `' _E |` suc A ) ) <-> Disj ( R |X. ( `' _E |` ( A u. { A } ) ) ) ) |
| 6 | disjxrnres5 | |- ( Disj ( R |X. ( `' _E |` ( A u. { A } ) ) ) <-> A. u e. ( A u. { A } ) A. v e. ( A u. { A } ) ( u = v \/ ( [ u ] ( R |X. `' _E ) i^i [ v ] ( R |X. `' _E ) ) = (/) ) ) |
|
| 7 | 5 6 | bitri | |- ( Disj ( R |X. ( `' _E |` suc A ) ) <-> A. u e. ( A u. { A } ) A. v e. ( A u. { A } ) ( u = v \/ ( [ u ] ( R |X. `' _E ) i^i [ v ] ( R |X. `' _E ) ) = (/) ) ) |
| 8 | disjxrnres5 | |- ( Disj ( R |X. ( `' _E |` A ) ) <-> A. u e. A A. v e. A ( u = v \/ ( [ u ] ( R |X. `' _E ) i^i [ v ] ( R |X. `' _E ) ) = (/) ) ) |
|
| 9 | 8 | anbi1i | |- ( ( Disj ( R |X. ( `' _E |` A ) ) /\ A. u e. A ( ( u i^i A ) = (/) \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) <-> ( A. u e. A A. v e. A ( u = v \/ ( [ u ] ( R |X. `' _E ) i^i [ v ] ( R |X. `' _E ) ) = (/) ) /\ A. u e. A ( ( u i^i A ) = (/) \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) ) |
| 10 | 1 7 9 | 3bitr4g | |- ( A e. V -> ( Disj ( R |X. ( `' _E |` suc A ) ) <-> ( Disj ( R |X. ( `' _E |` A ) ) /\ A. u e. A ( ( u i^i A ) = (/) \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) ) ) |