This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ressucdifsn2 . (Contributed by Peter Mazsa, 24-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjresundif | |- ( ( A i^i B ) = (/) -> ( ( R |` ( A u. B ) ) \ ( R |` B ) ) = ( R |` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resundi | |- ( R |` ( A u. B ) ) = ( ( R |` A ) u. ( R |` B ) ) |
|
| 2 | 1 | difeq1i | |- ( ( R |` ( A u. B ) ) \ ( R |` B ) ) = ( ( ( R |` A ) u. ( R |` B ) ) \ ( R |` B ) ) |
| 3 | difun2 | |- ( ( ( R |` A ) u. ( R |` B ) ) \ ( R |` B ) ) = ( ( R |` A ) \ ( R |` B ) ) |
|
| 4 | 2 3 | eqtri | |- ( ( R |` ( A u. B ) ) \ ( R |` B ) ) = ( ( R |` A ) \ ( R |` B ) ) |
| 5 | disjresdif | |- ( ( A i^i B ) = (/) -> ( ( R |` A ) \ ( R |` B ) ) = ( R |` A ) ) |
|
| 6 | 4 5 | eqtrid | |- ( ( A i^i B ) = (/) -> ( ( R |` ( A u. B ) ) \ ( R |` B ) ) = ( R |` A ) ) |