This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A way to define an ordered-pair class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006) (Revised by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfopab2 | |- { <. x , y >. | ph } = { z e. ( _V X. _V ) | [. ( 1st ` z ) / x ]. [. ( 2nd ` z ) / y ]. ph } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsbc1v | |- F/ x [. ( 1st ` z ) / x ]. [. ( 2nd ` z ) / y ]. ph |
|
| 2 | 1 | 19.41 | |- ( E. x ( E. y z = <. x , y >. /\ [. ( 1st ` z ) / x ]. [. ( 2nd ` z ) / y ]. ph ) <-> ( E. x E. y z = <. x , y >. /\ [. ( 1st ` z ) / x ]. [. ( 2nd ` z ) / y ]. ph ) ) |
| 3 | sbcopeq1a | |- ( z = <. x , y >. -> ( [. ( 1st ` z ) / x ]. [. ( 2nd ` z ) / y ]. ph <-> ph ) ) |
|
| 4 | 3 | pm5.32i | |- ( ( z = <. x , y >. /\ [. ( 1st ` z ) / x ]. [. ( 2nd ` z ) / y ]. ph ) <-> ( z = <. x , y >. /\ ph ) ) |
| 5 | 4 | exbii | |- ( E. y ( z = <. x , y >. /\ [. ( 1st ` z ) / x ]. [. ( 2nd ` z ) / y ]. ph ) <-> E. y ( z = <. x , y >. /\ ph ) ) |
| 6 | nfcv | |- F/_ y ( 1st ` z ) |
|
| 7 | nfsbc1v | |- F/ y [. ( 2nd ` z ) / y ]. ph |
|
| 8 | 6 7 | nfsbcw | |- F/ y [. ( 1st ` z ) / x ]. [. ( 2nd ` z ) / y ]. ph |
| 9 | 8 | 19.41 | |- ( E. y ( z = <. x , y >. /\ [. ( 1st ` z ) / x ]. [. ( 2nd ` z ) / y ]. ph ) <-> ( E. y z = <. x , y >. /\ [. ( 1st ` z ) / x ]. [. ( 2nd ` z ) / y ]. ph ) ) |
| 10 | 5 9 | bitr3i | |- ( E. y ( z = <. x , y >. /\ ph ) <-> ( E. y z = <. x , y >. /\ [. ( 1st ` z ) / x ]. [. ( 2nd ` z ) / y ]. ph ) ) |
| 11 | 10 | exbii | |- ( E. x E. y ( z = <. x , y >. /\ ph ) <-> E. x ( E. y z = <. x , y >. /\ [. ( 1st ` z ) / x ]. [. ( 2nd ` z ) / y ]. ph ) ) |
| 12 | elvv | |- ( z e. ( _V X. _V ) <-> E. x E. y z = <. x , y >. ) |
|
| 13 | 12 | anbi1i | |- ( ( z e. ( _V X. _V ) /\ [. ( 1st ` z ) / x ]. [. ( 2nd ` z ) / y ]. ph ) <-> ( E. x E. y z = <. x , y >. /\ [. ( 1st ` z ) / x ]. [. ( 2nd ` z ) / y ]. ph ) ) |
| 14 | 2 11 13 | 3bitr4i | |- ( E. x E. y ( z = <. x , y >. /\ ph ) <-> ( z e. ( _V X. _V ) /\ [. ( 1st ` z ) / x ]. [. ( 2nd ` z ) / y ]. ph ) ) |
| 15 | 14 | abbii | |- { z | E. x E. y ( z = <. x , y >. /\ ph ) } = { z | ( z e. ( _V X. _V ) /\ [. ( 1st ` z ) / x ]. [. ( 2nd ` z ) / y ]. ph ) } |
| 16 | df-opab | |- { <. x , y >. | ph } = { z | E. x E. y ( z = <. x , y >. /\ ph ) } |
|
| 17 | df-rab | |- { z e. ( _V X. _V ) | [. ( 1st ` z ) / x ]. [. ( 2nd ` z ) / y ]. ph } = { z | ( z e. ( _V X. _V ) /\ [. ( 1st ` z ) / x ]. [. ( 2nd ` z ) / y ]. ph ) } |
|
| 18 | 15 16 17 | 3eqtr4i | |- { <. x , y >. | ph } = { z e. ( _V X. _V ) | [. ( 1st ` z ) / x ]. [. ( 2nd ` z ) / y ]. ph } |