This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the neighbors of a vertex using the edge function instead of the edges themselves (see also nbgrval ). (Contributed by Alexander van der Vekens, 17-Dec-2017) (Revised by AV, 25-Oct-2020) (Revised by AV, 21-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfnbgr3.v | |- V = ( Vtx ` G ) |
|
| dfnbgr3.i | |- I = ( iEdg ` G ) |
||
| Assertion | dfnbgr3 | |- ( ( N e. V /\ Fun I ) -> ( G NeighbVtx N ) = { n e. ( V \ { N } ) | E. i e. dom I { N , n } C_ ( I ` i ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfnbgr3.v | |- V = ( Vtx ` G ) |
|
| 2 | dfnbgr3.i | |- I = ( iEdg ` G ) |
|
| 3 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 4 | 1 3 | nbgrval | |- ( N e. V -> ( G NeighbVtx N ) = { n e. ( V \ { N } ) | E. e e. ( Edg ` G ) { N , n } C_ e } ) |
| 5 | 4 | adantr | |- ( ( N e. V /\ Fun I ) -> ( G NeighbVtx N ) = { n e. ( V \ { N } ) | E. e e. ( Edg ` G ) { N , n } C_ e } ) |
| 6 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
| 7 | 2 | eqcomi | |- ( iEdg ` G ) = I |
| 8 | 7 | rneqi | |- ran ( iEdg ` G ) = ran I |
| 9 | 6 8 | eqtri | |- ( Edg ` G ) = ran I |
| 10 | 9 | rexeqi | |- ( E. e e. ( Edg ` G ) { N , n } C_ e <-> E. e e. ran I { N , n } C_ e ) |
| 11 | funfn | |- ( Fun I <-> I Fn dom I ) |
|
| 12 | 11 | biimpi | |- ( Fun I -> I Fn dom I ) |
| 13 | 12 | adantl | |- ( ( N e. V /\ Fun I ) -> I Fn dom I ) |
| 14 | sseq2 | |- ( e = ( I ` i ) -> ( { N , n } C_ e <-> { N , n } C_ ( I ` i ) ) ) |
|
| 15 | 14 | rexrn | |- ( I Fn dom I -> ( E. e e. ran I { N , n } C_ e <-> E. i e. dom I { N , n } C_ ( I ` i ) ) ) |
| 16 | 13 15 | syl | |- ( ( N e. V /\ Fun I ) -> ( E. e e. ran I { N , n } C_ e <-> E. i e. dom I { N , n } C_ ( I ` i ) ) ) |
| 17 | 10 16 | bitrid | |- ( ( N e. V /\ Fun I ) -> ( E. e e. ( Edg ` G ) { N , n } C_ e <-> E. i e. dom I { N , n } C_ ( I ` i ) ) ) |
| 18 | 17 | rabbidv | |- ( ( N e. V /\ Fun I ) -> { n e. ( V \ { N } ) | E. e e. ( Edg ` G ) { N , n } C_ e } = { n e. ( V \ { N } ) | E. i e. dom I { N , n } C_ ( I ` i ) } ) |
| 19 | 5 18 | eqtrd | |- ( ( N e. V /\ Fun I ) -> ( G NeighbVtx N ) = { n e. ( V \ { N } ) | E. i e. dom I { N , n } C_ ( I ` i ) } ) |