This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem falxortru

Description: A \/_ identity. (Contributed by David A. Wheeler, 9-May-2015) (Proof shortened by Wolf Lammen, 10-Jul-2020)

Ref Expression
Assertion falxortru
|- ( ( F. \/_ T. ) <-> T. )

Proof

Step Hyp Ref Expression
1 xorcom
 |-  ( ( F. \/_ T. ) <-> ( T. \/_ F. ) )
2 truxorfal
 |-  ( ( T. \/_ F. ) <-> T. )
3 1 2 bitri
 |-  ( ( F. \/_ T. ) <-> T. )