This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the symmetric relation predicate. (Read: R is a symmetric relation.) For sets, being an element of the class of symmetric relations ( df-symrels ) is equivalent to satisfying the symmetric relation predicate, see elsymrelsrel . Alternate definitions are dfsymrel2 and dfsymrel3 . (Contributed by Peter Mazsa, 16-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-symrel | |- ( SymRel R <-> ( `' ( R i^i ( dom R X. ran R ) ) C_ ( R i^i ( dom R X. ran R ) ) /\ Rel R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cR | |- R |
|
| 1 | 0 | wsymrel | |- SymRel R |
| 2 | 0 | cdm | |- dom R |
| 3 | 0 | crn | |- ran R |
| 4 | 2 3 | cxp | |- ( dom R X. ran R ) |
| 5 | 0 4 | cin | |- ( R i^i ( dom R X. ran R ) ) |
| 6 | 5 | ccnv | |- `' ( R i^i ( dom R X. ran R ) ) |
| 7 | 6 5 | wss | |- `' ( R i^i ( dom R X. ran R ) ) C_ ( R i^i ( dom R X. ran R ) ) |
| 8 | 0 | wrel | |- Rel R |
| 9 | 7 8 | wa | |- ( `' ( R i^i ( dom R X. ran R ) ) C_ ( R i^i ( dom R X. ran R ) ) /\ Rel R ) |
| 10 | 1 9 | wb | |- ( SymRel R <-> ( `' ( R i^i ( dom R X. ran R ) ) C_ ( R i^i ( dom R X. ran R ) ) /\ Rel R ) ) |