This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A monoid homomorphism is a function on the base sets which preserves the binary operation and the identity. (Contributed by Mario Carneiro, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-mhm | |- MndHom = ( s e. Mnd , t e. Mnd |-> { f e. ( ( Base ` t ) ^m ( Base ` s ) ) | ( A. x e. ( Base ` s ) A. y e. ( Base ` s ) ( f ` ( x ( +g ` s ) y ) ) = ( ( f ` x ) ( +g ` t ) ( f ` y ) ) /\ ( f ` ( 0g ` s ) ) = ( 0g ` t ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cmhm | |- MndHom |
|
| 1 | vs | |- s |
|
| 2 | cmnd | |- Mnd |
|
| 3 | vt | |- t |
|
| 4 | vf | |- f |
|
| 5 | cbs | |- Base |
|
| 6 | 3 | cv | |- t |
| 7 | 6 5 | cfv | |- ( Base ` t ) |
| 8 | cmap | |- ^m |
|
| 9 | 1 | cv | |- s |
| 10 | 9 5 | cfv | |- ( Base ` s ) |
| 11 | 7 10 8 | co | |- ( ( Base ` t ) ^m ( Base ` s ) ) |
| 12 | vx | |- x |
|
| 13 | vy | |- y |
|
| 14 | 4 | cv | |- f |
| 15 | 12 | cv | |- x |
| 16 | cplusg | |- +g |
|
| 17 | 9 16 | cfv | |- ( +g ` s ) |
| 18 | 13 | cv | |- y |
| 19 | 15 18 17 | co | |- ( x ( +g ` s ) y ) |
| 20 | 19 14 | cfv | |- ( f ` ( x ( +g ` s ) y ) ) |
| 21 | 15 14 | cfv | |- ( f ` x ) |
| 22 | 6 16 | cfv | |- ( +g ` t ) |
| 23 | 18 14 | cfv | |- ( f ` y ) |
| 24 | 21 23 22 | co | |- ( ( f ` x ) ( +g ` t ) ( f ` y ) ) |
| 25 | 20 24 | wceq | |- ( f ` ( x ( +g ` s ) y ) ) = ( ( f ` x ) ( +g ` t ) ( f ` y ) ) |
| 26 | 25 13 10 | wral | |- A. y e. ( Base ` s ) ( f ` ( x ( +g ` s ) y ) ) = ( ( f ` x ) ( +g ` t ) ( f ` y ) ) |
| 27 | 26 12 10 | wral | |- A. x e. ( Base ` s ) A. y e. ( Base ` s ) ( f ` ( x ( +g ` s ) y ) ) = ( ( f ` x ) ( +g ` t ) ( f ` y ) ) |
| 28 | c0g | |- 0g |
|
| 29 | 9 28 | cfv | |- ( 0g ` s ) |
| 30 | 29 14 | cfv | |- ( f ` ( 0g ` s ) ) |
| 31 | 6 28 | cfv | |- ( 0g ` t ) |
| 32 | 30 31 | wceq | |- ( f ` ( 0g ` s ) ) = ( 0g ` t ) |
| 33 | 27 32 | wa | |- ( A. x e. ( Base ` s ) A. y e. ( Base ` s ) ( f ` ( x ( +g ` s ) y ) ) = ( ( f ` x ) ( +g ` t ) ( f ` y ) ) /\ ( f ` ( 0g ` s ) ) = ( 0g ` t ) ) |
| 34 | 33 4 11 | crab | |- { f e. ( ( Base ` t ) ^m ( Base ` s ) ) | ( A. x e. ( Base ` s ) A. y e. ( Base ` s ) ( f ` ( x ( +g ` s ) y ) ) = ( ( f ` x ) ( +g ` t ) ( f ` y ) ) /\ ( f ` ( 0g ` s ) ) = ( 0g ` t ) ) } |
| 35 | 1 3 2 2 34 | cmpo | |- ( s e. Mnd , t e. Mnd |-> { f e. ( ( Base ` t ) ^m ( Base ` s ) ) | ( A. x e. ( Base ` s ) A. y e. ( Base ` s ) ( f ` ( x ( +g ` s ) y ) ) = ( ( f ` x ) ( +g ` t ) ( f ` y ) ) /\ ( f ` ( 0g ` s ) ) = ( 0g ` t ) ) } ) |
| 36 | 0 35 | wceq | |- MndHom = ( s e. Mnd , t e. Mnd |-> { f e. ( ( Base ` t ) ^m ( Base ` s ) ) | ( A. x e. ( Base ` s ) A. y e. ( Base ` s ) ( f ` ( x ( +g ` s ) y ) ) = ( ( f ` x ) ( +g ` t ) ( f ` y ) ) /\ ( f ` ( 0g ` s ) ) = ( 0g ` t ) ) } ) |