This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Perform a multiply-add of two numerals M and N against a fixed multiplier P (with carry). (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by AV, 6-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | decma.a | |- A e. NN0 |
|
| decma.b | |- B e. NN0 |
||
| decma.c | |- C e. NN0 |
||
| decma.d | |- D e. NN0 |
||
| decma.m | |- M = ; A B |
||
| decma.n | |- N = ; C D |
||
| decma2c.p | |- P e. NN0 |
||
| decma2c.f | |- F e. NN0 |
||
| decma2c.g | |- G e. NN0 |
||
| decma2c.e | |- ( ( P x. A ) + ( C + G ) ) = E |
||
| decma2c.2 | |- ( ( P x. B ) + D ) = ; G F |
||
| Assertion | decma2c | |- ( ( P x. M ) + N ) = ; E F |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decma.a | |- A e. NN0 |
|
| 2 | decma.b | |- B e. NN0 |
|
| 3 | decma.c | |- C e. NN0 |
|
| 4 | decma.d | |- D e. NN0 |
|
| 5 | decma.m | |- M = ; A B |
|
| 6 | decma.n | |- N = ; C D |
|
| 7 | decma2c.p | |- P e. NN0 |
|
| 8 | decma2c.f | |- F e. NN0 |
|
| 9 | decma2c.g | |- G e. NN0 |
|
| 10 | decma2c.e | |- ( ( P x. A ) + ( C + G ) ) = E |
|
| 11 | decma2c.2 | |- ( ( P x. B ) + D ) = ; G F |
|
| 12 | 10nn0 | |- ; 1 0 e. NN0 |
|
| 13 | dfdec10 | |- ; A B = ( ( ; 1 0 x. A ) + B ) |
|
| 14 | 5 13 | eqtri | |- M = ( ( ; 1 0 x. A ) + B ) |
| 15 | dfdec10 | |- ; C D = ( ( ; 1 0 x. C ) + D ) |
|
| 16 | 6 15 | eqtri | |- N = ( ( ; 1 0 x. C ) + D ) |
| 17 | dfdec10 | |- ; G F = ( ( ; 1 0 x. G ) + F ) |
|
| 18 | 11 17 | eqtri | |- ( ( P x. B ) + D ) = ( ( ; 1 0 x. G ) + F ) |
| 19 | 12 1 2 3 4 14 16 7 8 9 10 18 | numma2c | |- ( ( P x. M ) + N ) = ( ( ; 1 0 x. E ) + F ) |
| 20 | dfdec10 | |- ; E F = ( ( ; 1 0 x. E ) + F ) |
|
| 21 | 19 20 | eqtr4i | |- ( ( P x. M ) + N ) = ; E F |