This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005) (Revised by NM, 23-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbov123 | |- [_ A / x ]_ ( B F C ) = ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 | |- ( y = A -> [_ y / x ]_ ( B F C ) = [_ A / x ]_ ( B F C ) ) |
|
| 2 | csbeq1 | |- ( y = A -> [_ y / x ]_ F = [_ A / x ]_ F ) |
|
| 3 | csbeq1 | |- ( y = A -> [_ y / x ]_ B = [_ A / x ]_ B ) |
|
| 4 | csbeq1 | |- ( y = A -> [_ y / x ]_ C = [_ A / x ]_ C ) |
|
| 5 | 2 3 4 | oveq123d | |- ( y = A -> ( [_ y / x ]_ B [_ y / x ]_ F [_ y / x ]_ C ) = ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) ) |
| 6 | 1 5 | eqeq12d | |- ( y = A -> ( [_ y / x ]_ ( B F C ) = ( [_ y / x ]_ B [_ y / x ]_ F [_ y / x ]_ C ) <-> [_ A / x ]_ ( B F C ) = ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) ) ) |
| 7 | vex | |- y e. _V |
|
| 8 | nfcsb1v | |- F/_ x [_ y / x ]_ B |
|
| 9 | nfcsb1v | |- F/_ x [_ y / x ]_ F |
|
| 10 | nfcsb1v | |- F/_ x [_ y / x ]_ C |
|
| 11 | 8 9 10 | nfov | |- F/_ x ( [_ y / x ]_ B [_ y / x ]_ F [_ y / x ]_ C ) |
| 12 | csbeq1a | |- ( x = y -> F = [_ y / x ]_ F ) |
|
| 13 | csbeq1a | |- ( x = y -> B = [_ y / x ]_ B ) |
|
| 14 | csbeq1a | |- ( x = y -> C = [_ y / x ]_ C ) |
|
| 15 | 12 13 14 | oveq123d | |- ( x = y -> ( B F C ) = ( [_ y / x ]_ B [_ y / x ]_ F [_ y / x ]_ C ) ) |
| 16 | 7 11 15 | csbief | |- [_ y / x ]_ ( B F C ) = ( [_ y / x ]_ B [_ y / x ]_ F [_ y / x ]_ C ) |
| 17 | 6 16 | vtoclg | |- ( A e. _V -> [_ A / x ]_ ( B F C ) = ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) ) |
| 18 | csbprc | |- ( -. A e. _V -> [_ A / x ]_ ( B F C ) = (/) ) |
|
| 19 | df-ov | |- ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) = ( [_ A / x ]_ F ` <. [_ A / x ]_ B , [_ A / x ]_ C >. ) |
|
| 20 | csbprc | |- ( -. A e. _V -> [_ A / x ]_ F = (/) ) |
|
| 21 | 20 | fveq1d | |- ( -. A e. _V -> ( [_ A / x ]_ F ` <. [_ A / x ]_ B , [_ A / x ]_ C >. ) = ( (/) ` <. [_ A / x ]_ B , [_ A / x ]_ C >. ) ) |
| 22 | 0fv | |- ( (/) ` <. [_ A / x ]_ B , [_ A / x ]_ C >. ) = (/) |
|
| 23 | 21 22 | eqtrdi | |- ( -. A e. _V -> ( [_ A / x ]_ F ` <. [_ A / x ]_ B , [_ A / x ]_ C >. ) = (/) ) |
| 24 | 19 23 | eqtr2id | |- ( -. A e. _V -> (/) = ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) ) |
| 25 | 18 24 | eqtrd | |- ( -. A e. _V -> [_ A / x ]_ ( B F C ) = ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) ) |
| 26 | 17 25 | pm2.61i | |- [_ A / x ]_ ( B F C ) = ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) |