This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A square root of a complex number is zero iff its argument is 0. Version of sqrt00 for complex numbers. (Contributed by AV, 26-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnsqrt00 | |- ( A e. CC -> ( ( sqrt ` A ) = 0 <-> A = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( ( sqrt ` A ) = 0 -> ( ( sqrt ` A ) ^ 2 ) = ( 0 ^ 2 ) ) |
|
| 2 | sqrtth | |- ( A e. CC -> ( ( sqrt ` A ) ^ 2 ) = A ) |
|
| 3 | sq0 | |- ( 0 ^ 2 ) = 0 |
|
| 4 | 3 | a1i | |- ( A e. CC -> ( 0 ^ 2 ) = 0 ) |
| 5 | 2 4 | eqeq12d | |- ( A e. CC -> ( ( ( sqrt ` A ) ^ 2 ) = ( 0 ^ 2 ) <-> A = 0 ) ) |
| 6 | 1 5 | imbitrid | |- ( A e. CC -> ( ( sqrt ` A ) = 0 -> A = 0 ) ) |
| 7 | fveq2 | |- ( A = 0 -> ( sqrt ` A ) = ( sqrt ` 0 ) ) |
|
| 8 | sqrt0 | |- ( sqrt ` 0 ) = 0 |
|
| 9 | 7 8 | eqtrdi | |- ( A = 0 -> ( sqrt ` A ) = 0 ) |
| 10 | 6 9 | impbid1 | |- ( A e. CC -> ( ( sqrt ` A ) = 0 <-> A = 0 ) ) |