This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Basic continuity property of a continuous functional. (Contributed by NM, 11-Feb-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfnc | |- ( ( T e. ContFn /\ A e. ~H /\ B e. RR+ ) -> E. x e. RR+ A. y e. ~H ( ( normh ` ( y -h A ) ) < x -> ( abs ` ( ( T ` y ) - ( T ` A ) ) ) < B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elcnfn | |- ( T e. ContFn <-> ( T : ~H --> CC /\ A. z e. ~H A. w e. RR+ E. x e. RR+ A. y e. ~H ( ( normh ` ( y -h z ) ) < x -> ( abs ` ( ( T ` y ) - ( T ` z ) ) ) < w ) ) ) |
|
| 2 | 1 | simprbi | |- ( T e. ContFn -> A. z e. ~H A. w e. RR+ E. x e. RR+ A. y e. ~H ( ( normh ` ( y -h z ) ) < x -> ( abs ` ( ( T ` y ) - ( T ` z ) ) ) < w ) ) |
| 3 | oveq2 | |- ( z = A -> ( y -h z ) = ( y -h A ) ) |
|
| 4 | 3 | fveq2d | |- ( z = A -> ( normh ` ( y -h z ) ) = ( normh ` ( y -h A ) ) ) |
| 5 | 4 | breq1d | |- ( z = A -> ( ( normh ` ( y -h z ) ) < x <-> ( normh ` ( y -h A ) ) < x ) ) |
| 6 | fveq2 | |- ( z = A -> ( T ` z ) = ( T ` A ) ) |
|
| 7 | 6 | oveq2d | |- ( z = A -> ( ( T ` y ) - ( T ` z ) ) = ( ( T ` y ) - ( T ` A ) ) ) |
| 8 | 7 | fveq2d | |- ( z = A -> ( abs ` ( ( T ` y ) - ( T ` z ) ) ) = ( abs ` ( ( T ` y ) - ( T ` A ) ) ) ) |
| 9 | 8 | breq1d | |- ( z = A -> ( ( abs ` ( ( T ` y ) - ( T ` z ) ) ) < w <-> ( abs ` ( ( T ` y ) - ( T ` A ) ) ) < w ) ) |
| 10 | 5 9 | imbi12d | |- ( z = A -> ( ( ( normh ` ( y -h z ) ) < x -> ( abs ` ( ( T ` y ) - ( T ` z ) ) ) < w ) <-> ( ( normh ` ( y -h A ) ) < x -> ( abs ` ( ( T ` y ) - ( T ` A ) ) ) < w ) ) ) |
| 11 | 10 | rexralbidv | |- ( z = A -> ( E. x e. RR+ A. y e. ~H ( ( normh ` ( y -h z ) ) < x -> ( abs ` ( ( T ` y ) - ( T ` z ) ) ) < w ) <-> E. x e. RR+ A. y e. ~H ( ( normh ` ( y -h A ) ) < x -> ( abs ` ( ( T ` y ) - ( T ` A ) ) ) < w ) ) ) |
| 12 | breq2 | |- ( w = B -> ( ( abs ` ( ( T ` y ) - ( T ` A ) ) ) < w <-> ( abs ` ( ( T ` y ) - ( T ` A ) ) ) < B ) ) |
|
| 13 | 12 | imbi2d | |- ( w = B -> ( ( ( normh ` ( y -h A ) ) < x -> ( abs ` ( ( T ` y ) - ( T ` A ) ) ) < w ) <-> ( ( normh ` ( y -h A ) ) < x -> ( abs ` ( ( T ` y ) - ( T ` A ) ) ) < B ) ) ) |
| 14 | 13 | rexralbidv | |- ( w = B -> ( E. x e. RR+ A. y e. ~H ( ( normh ` ( y -h A ) ) < x -> ( abs ` ( ( T ` y ) - ( T ` A ) ) ) < w ) <-> E. x e. RR+ A. y e. ~H ( ( normh ` ( y -h A ) ) < x -> ( abs ` ( ( T ` y ) - ( T ` A ) ) ) < B ) ) ) |
| 15 | 11 14 | rspc2v | |- ( ( A e. ~H /\ B e. RR+ ) -> ( A. z e. ~H A. w e. RR+ E. x e. RR+ A. y e. ~H ( ( normh ` ( y -h z ) ) < x -> ( abs ` ( ( T ` y ) - ( T ` z ) ) ) < w ) -> E. x e. RR+ A. y e. ~H ( ( normh ` ( y -h A ) ) < x -> ( abs ` ( ( T ` y ) - ( T ` A ) ) ) < B ) ) ) |
| 16 | 2 15 | syl5com | |- ( T e. ContFn -> ( ( A e. ~H /\ B e. RR+ ) -> E. x e. RR+ A. y e. ~H ( ( normh ` ( y -h A ) ) < x -> ( abs ` ( ( T ` y ) - ( T ` A ) ) ) < B ) ) ) |
| 17 | 16 | 3impib | |- ( ( T e. ContFn /\ A e. ~H /\ B e. RR+ ) -> E. x e. RR+ A. y e. ~H ( ( normh ` ( y -h A ) ) < x -> ( abs ` ( ( T ` y ) - ( T ` A ) ) ) < B ) ) |